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Preface 

Majority of the organic molecules are electronically neutral and possessing closed 
shell configurations have net spin zero, live in the ground state as singlet. Upon 
excitation, the excited organic molecules could have paired and unpaired electronic 
configuration leading to excited singlet and triplet states respectively. Generation of 
singlet excited state is spin allowed process whereas intersystem crossing which 
generates triplet excited state is spin forbidden. Excited singlet and triplet states can be 
well differentiated based on their photophysical properties.  Longer lifetime (s-ms) and 
paramagnetic nature of triplet excited states when compared to diamagnetic short-lived 
(ns-s) singlet excited states make them to be used in various applications such as 
photocatalysis, bio-imaging, high performance solar cells and photovoltaics. But among 
the ocean of organic molecules, only handful of families such as organometallics, 
aromatic ketones, aromatic thiones, hetero-aromatics, and low molecular weight 
polyaromatic hydrocarbons possess inherent ability to access triplet excited state. It is 
very necessary to develop metal free organic phosphorescent/triplet active materials in 
different fields of applications. Perylenediimides (PDIs) are one among the versatile 
chromophoric systems that have been widely used in applications due to their 
remarkable photo, chemical and thermal stability.   Reported methods to access triplet 
state of PDI in solution make use of bimolecular triplet sensitization, substitution with 
heteroatoms, charge transfer (CT) complex and heavy metals induced intersystem 
crossing (ISC). Slip-stacked arrangement in the polycrystalline thin film of 2,5,8,11-
tetraphenyl PDI offers singlet exciton fission (SF) mediated triplet population. Designing 
of heavy atom free, PDI systems for efficient ISC is still burgeoning area of research. In 
this thesis, we have attempted different strategies to access the triplet excited state in 
PDIs through chemical and structural modifications.  

The best approach to develop metal free phosphorescent material could be 
covalently attaching the heavier halogen atoms such as bromine and iodine. Heavy 
atoms promote intersystem crossing to access triplet excited state due to their spin orbit 
coupling. Studies have demonstrated that bromination could enhance the rate of 
intersystem crossing in organic molecules significantly. Unfortunately in the case of 
perylene family dyes, mono-bromination is not sufficient to enhance the intersystem 
crossing. We have attempted to sequentially substitute bromine atoms at the bay region 
of PDI to yield PDI-Br0-4 in chapter 2. Crystal structures of PDI-Br3-4 show the core-
twisted nature of the derivatives, which perturbs the excitonic interaction in the 
crystalline state.  Electrochemical analysis shows that the electron affinity of the PDIs is 
increased consecutively upon sequential bromination.  
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Basic photophysical measurements in toluene show characteristic PDI absorption 
and partially quenched fluorescence upon successive bromination. Nano and 
femtosecond transient absorption measurements show ultrafast intersystem crossing in 
core-twisted derivatives in toluene solution. The quantum yield of triplet generation in 
core-twisted perylenediimide calculated to be 5 and 18% in PDI-Br3 and PDI-Br4 
respectively. Enhanced intersystem crossing in the core-twisted PDIs upon successive 
bromination is attributed to the energy gap reduction between the excited singlet and 
nearby triplet excited state. Slip-stacked arrangement of the PDI-Br4 in the crystalline 
state could promote possibility of singlet fission (SF) mediated triplet generation. 
Nanosecond transient absorption measurements show enhanced triplet quantum yield 
of 105±5% in polycrystalline thin film of PDI-Br4 upon excitation with 355 nm.   

Structural deformation from coplanar to non-planar geometry in the molecules is 
considered to enhance nonradiative decay pathway such as intersystem crossing from 
singlet excited state.  Twisting the perylenediimide molecule could lead to improved 
triplet generation arising from the non-planar geometry. It is uncertain to conclude that 
intersystem crossing observed in PDI-Br3-4, discussed in chapter 2, is due to the presence 
of heavy atom effect or core-twisted nature of the derivatives. In order to deconvolute 
the heavy atom effect from core-twist, heavy atom free “twist-only” bearing PDI 
structures were designed.  

In chapter 3 we discuss the synthesis, crystal structure and “twist-only” 
promoted intersystem crossing in the systematically twisted perylenediimide based 
chromophores. Designed contorted chromophores 1c and 2d were synthesised by 
Suzuki coupling of one and two phenanthrene units respectively with 1-bromo and 1,7-
dibromo perylenediimide (PDI) followed by the metal catalysed Scholl 
dehydrocyclisation reaction. Planar model derivative 3c was synthesised by Suzuki 
coupling of two benzene with 1,7-dibromo PDI followed by Scholl reaction. Red 
fluorescent crystals of the derivatives 1c and 2d were obtained from the chloroform and 
toluene solution respectively. Repulsion between the hydrogens at the cove regions of 
the derivatives 1c and 2d twist the chromophores from planarity. The dihedral angle 
between the non-planar units in 1c and 2d is found to be 40-44°. Cyclic voltammogram 
analysis exhibits higher negative reduction potential when compared to the model 
derivative 3c, indicating the weaker electron acceptor strength of the derivatives 1c and 
2d. UV-vis absorption and partially quenched fluorescence show the possibility of 
intersystem crossing in contorted chromophores. Nano and femtosecond transient 
absorption measurements show significant 10±1 and 30±2% of triplet generation in the 
contorted derivatives 1c and 2d respectively when compared to the negligible triplet 
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generation in the planar derivative 3c. Quantum chemical calculations indicate that out 
of plane C=C and C-H vibrations can allow efficient ISC driven by vibronic coupling. 

Photoinduced electron transfer processes in electron donor (D) - acceptor (A) 
systems are widely studied to understand the charge transfer rates and efficiencies. 
Earlier investigations on multichromophoric systems had shown that the important 
recombination pathway of charge transfer (D+•-A-•)* state consists of intersystem 
crossing to yield triplet excited state of the units. In chapter 4, we attempted to 
synthesise perylenediimide based donor-acceptor systems which can undergo efficient 
charge transfer followed by the generation of triplet excited state in PDI upon excitation. 
The photophysics of molecular dyads and triads consisting of perylenediimide (PDI) 
covalently connected to the donor anthracene (AN) or pyrene (PY) at the bay positions is 
presented in chapter 4. Desired dyads and triads were synthesised by performing 
Suzuki reaction of 1-bromo/1,7-dibromo PDI with 9-anthracenyl and 1-pyrenyl boronic 
acid. Density Functional Theory (DFT) calculations of the dyads (AN-PDI, PY-PDI) and 
triads (AN-PDI-AN, PY-PDI-PY) reveal a near-orthogonal geometry between the donor 
and acceptor units. UV-vis absorption spectra of the derivatives show summed 
absorption of donor and acceptor along with the ground state charge transfer band at 
the long wavelength region. Upon excitation of toluene solution at 375 nm, dyads and 
triads exhibit higher stokes’ shifted (100-150 nm) emission spectra which is attributed to 
charge transfer emission. Charge transfer characteristics of the triads were further 
confirmed by Lippert-Mataga analysis and the solvent dependent excited state 
properties. Femtosecond and nanosecond transient absorption spectroscopic techniques 
were performed to understand the excited state properties of the triads (AN-PDI-AN 
and PY-PDI-PY).   

Upon excitation with 355 nm, 10 ns laser pulse in non-polar solvent such as 
toluene, AN-PDI-AN yielded the triplet excited state localised on PDI (T = 40 %) moiety 
(AN-PDI3-AN)* having a lifetime of 500 ns. In a moderately polar solvent such as 
chloroform, an equilibrium between localised triplet state (AN-PDI3-AN)* and long 
lived (T = 5 s) charge transfer 3(AN+•-PDI-•-AN)* is observed. But in more polar solvent 
such as N,N-dimethylformamide, long lived charge transfer 3(AN+•-PDI-•-AN)* is the 
only species observed in the transient absorption measurement. The other triad PY-PDI-
PY also exhibits same behaviour upon excitation with 355 nm. To further understand the 
kinetics of triplet formation, femtosecond transient absorption measurement was 
performed. Upon excitation with 400 nm, 110 fs laser, both the triads exhibit ultrafast 
ISC to generate triplet species in chloroform solution.  
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Chapter 1 

Triplet Excited State in Organic Chromophores 
 

1.1. Introduction 

 The current achievements of modern material chemistry are implausible 

without the contribution of organic compounds which are cheap, environmentally 

safer and flexible for modulation when compared to their inorganic counterparts[1-

3]. Enhanced performance of organic fluorescent materials have attracted immense 

attention in the field of biological imaging, display, lighting systems (such as OLEDs 

and LCDs) and as for other functional applications[4]. On the otherhand, organic 

phosphorescent materials have not witnessed same level of achievements as organic 

fluorescent materials[5]. Understanding the difference between fluorescence and 

phosphorescence requires the knowledge of electron spin and spin states in the 

molecules[6]. 

1.2. Singlet and triplet excited state 

 Electrons in the atoms revolve around the nucleus with the spin quantum 

number (s) of ±	1 2ൗ . Based on the outer shell electronic configuration, spin states of 

the atom/molecule are defined by using the formula 2S+1 where S is total spin 

quantum number which is equal to ∑(s1+s2+s3+…). For example, the spin state of the 

molecules with a single unpaired electron (S=	1 2ൗ ), doubly paired electrons (S=0) and 

doubly unpaired electrons (S=1) are defined as doublet, singlet and triplet 



Chapter 1 – Triplet Excited State in Organic Chromophores 

 

2 
 

respectively (Figure 1.1A). Based on the Pauli exclusion principle, two electrons in 

an orbital cannot have the same spin quantum number. So, encountering molecules 

which live in the triplet spin state is very sparse. However, oxygen lives in the 

ground state as triplet due to the presence of two unpaired electrons in the 

degenerate molecular orbitals. Radicals are another class of molecules which can also 

possess the triplet spin in the ground state.  

 

Figure 1.1. A) Ground state and B) excited state singlet and triplet in an orbital 

configuration scheme. The arrows indicate the electron spin. 

Majority of the electronically neutral organic molecules possessing closed shell 

(paired) configuration have net spin zero, live in the ground state as singlet. Upon 

excitation, the excited organic molecules could have either paired or unpaired 

electronic configuration leading to excited singlet and triplet states respectively 

(Figure 1.1B). Whether an excited molecule is in a spin singlet or triplet state 

depends only on the relative spin orientation of the excited and ground state 

electron[7]. Thus, as the spin projection of the electron in the ground state does not 

Excited State 
Singlet 

Excited State 
Triplet 

Ground State 
Singlet 

Energy 

Doublet Singlet Triplet 

A) 

B) 
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change during the transition, α and β notation for the excited electron spin 

projection directly corresponds to spin singlet and triplet states of the molecule 

respectively. The two spins, indicated by arrows, precess around a local magnetic 

field in z-direction (Figure 1.2)[8]. The anti-parallel and 180° out of phase 

configuration corresponds to the situation in a singlet state (S= 0), while the other  

 

Figure 1.2. Vector diagram illustrating the relative orientations of the two electron spins for 

the singlet and the triplet excited states.  

three in phase configurations yield a triplet state (S=1). For the singlet excited state, 

the total wave function is given as,[9] 

௦ߖ = ቂ ଵ
√ଶ
ቀ߮ఈ(1)߮ఉ(2) + ߮ఉ(1)߮ఈ(2)ቁቃ ቂ ଵ

√ଶ
ଶߚଵߙ) −  ଶ)ቃ ; Ms = 0                 ----(1.1)ߙଵߚ

While for the triplet excited state, the possible total wave functions are given as 

follows, 

்ߖ = ቂ ଵ
√ଶ
ቀ߮ఈ(1)߮ఉ(2)− ߮ఉ(1)߮ఈ(2)ቁቃ ቂ ଵ

√ଶ
 ቃ; Ms = 1                             ----(1.2)(ଶߙଵߙ)

்ߖ = ቂ ଵ
√ଶ
ቀ߮ఈ(1)߮ఉ(2)− ߮ఉ(1)߮ఈ(2)ቁቃ ቂ ଵ

√ଶ
ଶߚଵߙ) +  ଶ)ቃ; Ms = 0                ----(1.3)ߙଵߚ

்ߖ = ቂ ଵ
√ଶ
ቀ߮ఈ(1)߮ఉ(2)− ߮ఉ(1)߮ఈ(2)ቁቃ ቂ ଵ

√ଶ
 ቃ; Ms = -1                            ----(1.4)(ଶߚଵߚ)

Where ߮ is spatial function; α and β are spin function; Ms is total spin  



Chapter 1 – Triplet Excited State in Organic Chromophores 

 

4 
 

The difference between a molecule in the singlet and triplet state is that the 

molecule is diamagnetic in the singlet state and paramagnetic in the triplet state[10].  

This difference in spin state makes the transition from singlet to triplet (or triplet to 

singlet) more improbable than the singlet to singlet (or triplet to triplet) transitions. 

Singlet to triplet (or reverse) transition involves a change in spin state, which is 

forbidden based on the selection rules[11]. The transition between the different spin 

multiplicities can be explained by a Jablonski diagram (Figure 1.3)[12]. 

1.3. Jablonski diagram 

The Jablonski diagram is a partial energy diagram that represents the energy of 

molecule in its different energy states (Figure 1.3). The lowest and darkest horizontal 

line represents the ground-state electronic energy of the molecule which is the 

singlet state (S0), majority of the molecules in a solution are in this state at room  

 

Figure 1. 3. Jablonski diagram showing possible transition in the molecule upon excitation. 
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temperature. The upper lines represent the excited electronic states: S1 and 

S2 represent the electronic singlet state; T1 and T2 represent the electronic triplet 

state. There are numerous vibrational levels that can be associated with each 

electronic state as denoted by the thinner lines. Upon excitation, instantaneous 

transition (absorption) can occur from the ground state (S0) to various vibrational 

levels in the singlet excited states (Sn) generating strongly bound electron-hole pair, 

so called exciton. Transition from S0 to the triplet electronic state (Tn) is forbidden 

because of the different spin multiplicity between the two states (spin forbidden).  

The excited molecule can undergo various deactivation processes to relax back to the 

ground state. 

Internal Conversion (IC): Internal conversion is a spin allowed non-radiative 

process of molecule that passes to a lower electronic state from higher excited state. 

It is a crossover of two states with the same multiplicity meaning singlet-to-singlet or 

triplet-to-triplet states. This process happens in the time scale of 10-14 to 10-11 s.  

Fluorescence: Spin allowed radiative transition from higher singlet excited state to 

lower singlet excited state or ground state is called fluorescence. Most of the organic 

molecules fluoresce from the lower singlet excited state (S1) to ground state (S0) 

which phenomenon is governed by the Kasha’s rule. Fluorescence occurs in the time 

scale of 10-9 to 10-7 s. 

Intersystem Crossing (ISC): Intersystem crossing is a process where there is a 

crossover between electronic states of different multiplicity (Sn→Tn) as demonstrated 
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in the Figure 1.3. Due to the spin forbidden nature of ISC, it occurs with time scale of 

10-11 to 10-6 s. Spin-orbit coupling (interaction of spin and orbital motion of the 

electron) enhances the probability of ISC.  

Phosphorescence: After ISC to the triplet excited state, further deactivation can 

occur through forbidden radiative or non-radiative transition to the ground state. 

The radiative transition from Tn→Sn is called phosphorescence while the non-

radiative decay is known as reverse intersystem crossing (RISC). Owing to the 

forbidden nature of such transition, triplet excited state lives for longer lifetime 

when compared to the singlet excited states. Hence, phosphorescence happens at a 

timescale of 10-6 to 102 s which is longer compared to the spin allowed transitions. 

1.4. Applications of triplet excited state 

While fluorescent singlet state has been investigated intensively for diverse 

applications, the recent development of organic triplet active materials is a research 

goal that continues to attract growing interest over fluorescent molecules for various 

applications owing to higher lifetime, slow emission and paramagnetic nature[13]. 

Following are the few examples where the importance of triplet over singlet excited 

state is well established.  

1.4.1. High performance solar cells 

Solar cell is a device that converts light energy into electricity by 

the photovoltaic effect. The efficiency of the device is estimated from the efficiency of  
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Figure 1. 4. Functional mechanism of a bilayer organic solar cell upon excitation of the 

donor.  

the following sequential processes[14]. 1) light absorption; 2) exciton diffusion; 3) 

charge separation and 4) charge collection (Figure 1.4).  Among the four processes, 

exciton diffusion and charge collection efficiencies depend on the lifetime of the 

exciton generated.  

ܮ                                                                   =  (1.5) ---                                        ߬ܦ√

where, LD is exciton diffusion length (cm); D is exciton diffusion co-efficient (cm2/s) 

and is lifetime of exciton (s). By virtue of longer lifetime, triplet excitons can diffuse 

significantly longer distance when compared to the  singlet excitons which has 

comparatively shorter lifetime[15]. Thus utilising triplet active material in the solar 

cells can boost the efficiency of the device significantly, which have been proven in 

multi-junction organic solar cells[14]. Most of the solar cells utilise the singlet exciton 

over triplet exciton, due to the fact that the triplet excitons could be trapped by the 

singlet oxygen which will reduce the efficiency of the solar cell. However, the 

enhancement due to the longer exciton diffusion of triplet exciton and oxygen free 

processing of the solar cells will easily overcome the drawback. 
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1.4.2. Phosphorescent bio-probes 

 With the rapid development of life science and pathology, research on 

intracellular active species, cell signal transduction, and apoptosis by fluorescence 

microscopy imaging has become an important and active field. For biological 

samples, the target fluorescent signal often suffers from interference with 

background fluorescence, reducing the target-to-background ratio. An effective 

strategy to address this problem is to utilize a time-gated technique, which requires 

long-lived phosphorescence as the target signal and can effectively eliminate the 

interference from short-lived background fluorescence[16]. This phenomenon is to 

be successful in the imaging of living cells by using water soluble phosphorescent 

dyes (Figure 1.5)[17].  

 

Figure 1. 5. A) Confocal luminescence images of fixed KB cells stained with phosphorescent 

and fluorescent under same excitation conditions (405 nm) with different laser scan times; B) 

decay profiles of fluorescent (channel 1) and phosphorescent (channel 2), images (Adapted 

with permission from ref. 17. Copyright © 2011, Royal Society of Chemistry). 
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1.4.3. Photodynamic therapy 

 

Figure 1. 6. A) Working principle of PDT; B) photophysical processes involved in the 

formation of reactive oxygen species.  

 Photodynamic therapy (PDT) is a treatment (Figure 1.6A) that uses 

photosensitizing agents as drug, along with light to kill cancer cells. PDT employs 

the photophysical properties of the activated photosensitizer (triplet state), resulting 

in the production of reactive oxygen species (Figure 1.6B). Upon irradiation with the 

specific wavelength, the photosensitizing agent can access the triplet excited state 

which is followed by triplet – triplet energy transfer to generate the reactive oxygen 

species (ROS)[18]. 

1.4.4. Phosphorescent displays 

Phosphorescent organic light-emitting diodes (PHOLEDs) are now a key part 

of today's display industry and are also poised to transform solid-state lighting[19]. 

PHOLEDs use the principle of electro-phosphorescence to convert electrical energy 

into light in a highly efficient manner with the internal quantum efficiencies of such 

devices approaching 100%[20]. Due to their potentially high level of energy 
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efficiency, PHOLEDs are being preferred over other OLEDs for potential use in 

large-screen displays such as computer monitors or television screens, as well as 

general lighting needs. 

Moreover, organic triplet active materials have received immense attention in 

the fields of photo-catalysis, triplet-triplet up-conversion and photo-redox reactions. 

Thus, design and synthesis of long lived triplet active organic molecules is a 

burgeoning area of research.  

1.5. Characterisation of triplet excited state 

It is highly essential to have a good understanding of detection techniques to 

identify the presence of triplet excited state. Triplet excited states can be 

characterized by following their magnetic, photophysical and photochemical 

properties. 

1.5.1. Electron paramagnetic resonance (EPR) 

Systems with S > 0 will experience a quantization of spin states when placed in 

an applied magnetic field and exhibit discrete spin states according to the 

multiplicity rule 2S + 1[21]. When two unpaired electrons are present in a system, the 

spin state depends upon the alignment of the two electrons as shown in Figure 1.7. If 

the unpaired electrons are aligned antiparallel, the multiplicity is a singlet (S=0), 

diamagnetic in nature, hence no EPR transition is observed. When the spins are 

aligned parallel (S = 1), in the presence of external magnetic field, system can exhibit 

three spin states, with spin quantum numbers (Ms ) equal to -1, 0 and 1 (Figure 1.7). 
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The interaction between the spin and the field is described by the Zeeman effect; the 

energy separation between the spin states increases with the increase of the applied 

magnetic field according to the expression,  

ܧ                                                       =                                                             ---(1.6)ܤߤ௦݃ܯ

ܧ∆                                                        = ݃ߤܤ                                                            ---(1.7)                         

where, Ms is spin quantum number; ge is electronic g factor (ge=2.0023 for free 

electron); B is Bohr magneton and B0 is the strength of the applied magnetic field. 

According to the MS = ±1 selection rule, there are two allowed transitions for triplet 

excited state in the external magnetic field.  The energy separation between the spin 

states increases with the increase of the applied magnetic field according to the 

equation 1.7. Thus, electron paramagnetic resonance is the most powerful technique 

to establish the presence of molecule in its triplet excited state[10].  

 

Figure 1. 7. Induction of the spin state energies of triplet excited state as a function of the 

magnetic field B0; arrows indicate the possible transition in the presence of external magnetic 

field. 
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1.5.2. Phosphorescence spectroscopy 

Upon excitation to singlet excited state followed by ISC, the molecule can 

return to the ground state by emission of radiation and this T1 to S0 transition is 

called phosphorescence (Figure 1.8A). As discussed earlier, phosphorescence has 

long life-time which can vary from 10-6 to 102 s, depending upon the structure of the 

molecule. Phosphorescence emission spectra occur at longer wavelengths than 

fluorescence emission spectra because of the loss in energy which occurs during ISC 

from the singlet to triplet state (Figure 1.8B)[12]. Because of the long life-times, the 

molecule has a very high probability of losing its excess energy by non-radiative 

routes such as internal conversion, bimolecular collision, and photodecompositions. 

As a result, phosphorescence is not routinely observed in solutions at room 

temperature. Quenching of the triplet state by oxygen is also effective in preventing 

phosphorescence, and thorough degassing of the solution is required before 

 

Figure 1. 8. A) Jablonski diagram showing the difference between fluorescence and 

phosphorescence; B) comparison of absorption, fluorescence and phosphorescence spectra of 

chrysene. 
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measurement. Several methods have been used to enable the observation of 

phosphorescence, in other words, to restrict collisional deactivation. One of the most 

common techniques is to supercool solutions to a rigid glass state usually at the 

temperature of liquid nitrogen (77 K). Phosphorescence can also be observed by 

inserting the analyte into a rigid polymer matrix, although the area of applications is 

limited. Recent developments have shown that, under certain circumstances, the 

phosphorescence of polyaromatic hydrocarbons adsorbed on a variety of supports 

can be observed at room temperature. Amongst these advances, the most important 

feature is the internal or external addition of heavy atoms improves the efficiency of 

ISC which enhances the sensitivity of the technique. 

1.5.3. Generation of singlet oxygen  

Singlet oxygen is the common name of an electronically excited state of 

molecular oxygen which is less stable than molecular oxygen in the electronic 

ground state. It is typically generated via energy transfer from the excited state of a 

photosensitizer to the oxygen molecule (Figure 1.9)[22]. As we discussed in the 

section 1.4.3, the ability of a molecule to generate singlet oxygen is an evidence for 

the presence of triplet excited state. Upon illumination, analyte is excited to the 

excited singlet state (S1), which crosses to the lower triplet excited state (T1) via ISC. 

The excited triplet state can then convert triplet oxygen (3O2) into singlet oxygen 

(1O2) through triplet – triplet energy transfer. The emission at 1270 nm provides a 

convenient tool to characterize the singlet oxygen in the 1g state. The next higher  
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Figure 1. 9. Jablonski diagram showing the triplet – triplet energy transfer process leading to 

the singlet oxygen (1O2) population upon excitation.  

electronic state is the 1∑g, 37.5 kcal/mol or 13121 cm-1 above the ground state. It emits 

weakly by decay to both the 1g state and the ground state. 

1.5.4. Transient absorption spectroscopy 

Transient absorption spectroscopy helps to study the mechanistic and kinetic 

details of photophysical processes occurring on the time scales of sub picoseconds to 

femto seconds (Figure 1.10)[23]. These photophysical events are initiated by an 

ultrafast laser pulse and are further probed by a probe pulse. With the help of TA 

measurements, one can look into the relaxation processes of higher electronic states 

(~femtoseconds), vibrational relaxations (~picoseconds) and intersystem crossing of 

excited singlet state to triplet excited state (occurs on nanoseconds time scale).  

Transient absorption spectroscopy can be used to trace the intermediate states 

in a photo-chemical reaction; energy, electron transfer process; conformational 

changes, thermal relaxation, fluorescence or phosphorescence processes, optical gain 
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spectroscopy of semiconductor laser materials, etc. With the availability of UV-Vis-

NIR ultrafast lasers, one can selectively excite a portion of any large molecule to the 

desired excited states to study the specific molecular dynamics. 

 In a typical experimental set up, a pump pulse excites the sample and later, a 

delayed probe pulse strikes the sample. In order to maintain the maximum spectral 

distribution, two pulses are derived from the same source. The impact of the probe 

pulse on the sample is recorded and analysed with wavelength/ time to study the 

dynamics of the excited state. Transient absorption (A or  O. D.) records any 

change in the absorption spectrum as a function of time and wavelength which is, 

calculated as follows,  

Transient absorption = Absorption after probe – Absorption after pump 

Steady state absorption or ground state bleach: Bleaching of ground state refers to 

depletion of the ground state carriers to excited states (S0 → Sn) upon excitation with 

pump pulse. It is shown by the negative absorption in the transient spectrum. 

Transient absorption: Excited electrons are further excited to higher excited states 

by the probe light (white light). Transient absorption (S1 → Sn; T1 → Tn)   exhibits 

positive absorption in the spectrum.  

Stimulated emission: Excited species is stimulated to emit light by the probe which 

follows the fluorescence and /or phosphorescence spectra of the molecule (S1 → S0; 

T1→ S0). Stimulated emission shows negative absorption in the transient spectrum. 

Depending on the pulse width of the excitation pulse transient absorption 
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Figure 1. 10. Jablonski diagram showing possible transient absorption of a molecule from the 

excited state. 

spectroscopy is named as 1) attosecond (10-18 s); 2) femtosecond (10-15 s); 3) 

picosecond (10-12 s) and 4) nanosecond (10-9 s) transient absorption spectroscopy. In  

this thesis, femtosecond and nanosecond spectroscopic techniques are used to 

characterise and study the excited state properties of various chromophores.  

1.6. Triplet excited state in organic molecules  

Population of the triplet excited state in the molecule requires a non-radiative 

transition between two different spin states (Sn→Tn). Energy and the total angular 

momentum (orbital and spin) have to be conserved during the transition. The most 

important interaction that couples two spin states and that provides a means of 
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conserving the total angular momentum is the coupling of the electron spin with the 

orbital angular momentum, i.e., the spin–orbit coupling (SOC). In the ocean of 

organic molecules reported, only handful of molecules has sufficient SOC to exhibit 

ISC. For example, polyaromatic hydrocarbons such as naphthalene, anthracene, 

pyrene and chrysene etc.[7] show efficient ISC to populate triplet excited state 

(Figure 1.11A). Series of reports demonstrates that the ISC properties of organic 

molecules could be enhanced by introducing various functional groups and atoms as 

listed below[5]. 

Chromophores with low-lying n-π* transitions: Ketones, thiones, and heterocyclic 

aromatic compounds (Figure 1.11C) are found to show nearly quantitative triplet 

generation upon excitation. These family of molecules undergo rapid ISC from 

n → π* singlet excited state to an energetically close π → π* triplet state.  According 

to El-Sayed's selection rule, angular momentum is conserved during the 

transition, S1 (n, π*) → T1 (π,π*), hence the transition is allowed[8]. 

Heavy atom effect: The enhancement of the rate of a spin-forbidden process by the 

presence of an atom of high atomic number, which is either part of or external to the 

excited molecular entity, is defined as heavy atom effect. Heavy atom effect is a 

nuclear-charge effect and scales with Z4 (Z is the nuclear charge). Heavier nucleus 

can induce strong SOC as a result, efficiency of ISC is enhanced[24].  

Organometallic complexes: Organometallic complexes are the most popular organic 

phosphors being used currently though they are not purely organic in nature. These 
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Figure 1. 11. Examples of known organic phosphors; A) polyaromatic hydrocarbon along 

with fullerene C60; B) organometallic complexes Ir and Pt complexes; C) aromatic ketone, 

thione and heterocyclic aromatics. 

complexes are phosphorescent because of the large metal atom such as Ir, Pt, Ru, Os, 

Re and Rh etc., which promote SOC (Figure 1.11B). But incorporating precious 

metals into organic ligands enhances the cost and reduces the flexibility of the 

material and limit the application. 

Halogen substitution: Unlike organometallic complexes, halogen substituted 

organic molecules are purely organic in nature. Substitution with heavier halogen 

atoms such as bromine and iodine enhances the SOC of organic molecules 

significantly. For example ISC properties of naphthalene are enhanced significantly 

upon substitution with heavier halogen atoms (Figure 1.12)[7]. 

A) 

B) 

C) 
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Figure 1.12. Rate of ISC of naphthalene upon substitution with halogen atoms. 

Charge transfer mediated triplet generation: Intramolecular or intermolecular 

charge transfer (CT) followed by charge recombination can happen through ISC, if 

the triplet excited state lies below the excited CT state (Figure 1.13)[25]. This 

phenomenon is observed in various donor – acceptor blends and dyad molecules[8].  

 

Figure 1.13. Energy level ordering of localised and charge transfer singlet and triplet excited 

states of donor-acceptor systems (Adapted with permission from ref. 25. Copyright © 2008, 
American Chemical Society). 

Singlet exciton fission: Singlet fission (SF) is a spin allowed process in which a 

singlet excited molecule shares its energy with the neighboring ground state 

molecule to generate two triplet excitons (figure 1.14)[26].  

 This phenomenon has been observed in single crystal, polycrystalline, 

amorphous solids and concentrated solutions, producing triplet yields as high as  

kISC (s-1 ) 0.39 0.42 2.35 36.5 310 

Molecule 
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Figure 1.14. Mechanism of singlet exciton fission. 

200%. SF has been extensively studied in pentacene and its derivatives. Recently SF 

mediated triplet generation is gaining more attention due to its ability to enhance the 

Shokley- Queisser limit of solar cells from 32% to 45%[27].  

Till date, SF has been observed in crystalline anthracene[28], tetracene[29], 

pentacene[30], 1,3-diphenylisobenzofuran[31], rubrene[32], bipentacene[33], 

carotenoid[34], hexacene[35], TIPS-pentacene[36-37], zeaxanthin[38], terrylene[39], 

thiophene polymer[40] and perylenediimide[41] having triplet quantum yield 

ranging from 1-200%. Two pathways for SF where formation of polar transition state 

followed by triplet generation and a direct single step mechanism have been 

reported[26]. Wasielewski and coworkers reported significant triplet formation in 

co-facial/slip-stacked PDI dimers[42-43] through polar transition state and 

polycrystalline thin films of slip-stacked PDI  through single step mechanism[41]. 

However, despite this great promise, there exist strict limitations to the 

molecular design of novel phosphorescent materials. The field is restricted, 

practically, to few families of organic molecules. It is still a challenge to design a 

triplet active molecule, especially the chromophores without any heavy atoms. This 

difficulty is mainly due to the lack of established relationships between the ISC and 

molecular structures. 

S0 + S0   S1 + S0   [T1 T1 ] 2 T1 

hn

Ground  
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Singlet  
excited state 
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1.7. Perylenediimide dyes 

Perylenediimide dyes are rylene family dyes having two naphthalimides 

connected through two single bonds (Figure 1.15). In organic materials 

perylenediimides are among the most stable compounds towards chemical, heat and 

light. They have been known for nearly 100 years, when Kardos found a way to 

synthesize perylenediimides in the beginning of 1910s. Several decades later, 

perylene derivatives have been used as commercial products and they are still 

recognized as an important class of high-performance pigments. In that market they 

are primarily applied for the coloration of automotive paint and for the mass 

coloration of synthetic fiber and engineering resins[44]. 

The perylene core has twelve functionalizable positions[45], classified into 

three distinct regions as follows,  

1)  Peri region: 3, 4, 9 and 10th positions   

2) Bay region: 1, 6, 7 and 12th positions  

3) Ortho region: 2, 5, 8 and 11th positions  

 According to the functionalizing positions, there are three important stages for 

the development of perylenediimides which is referred to as “generations”[44].  In 

the 1st generation the 3, 4, 9, 10 - diimides substitutions were intensively developed 

(Figure 1.15). In second generation, bay-decoration with different functional group is 

being investigated. The third generation PDIs are becoming an interesting direction 

for research from the recent discovery the ortho-functionalization. 
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Figure 1. 15. Chemical structure of perylene and its derivative explored during different 

time period (Adapted with permission from ref. 44. Copyright © 2012, John Wiley and 

Sons). 

1.7.1. Electrochemical properties 

PDI dyes exhibit electron deficiency due to the presence of electron 

withdrawing carbonyl groups. The very typical signature of all PDIs is two 

reversible redox couples that are located at around −0.6 and −0.8 V vs the Ag/AgCl 

redox couple in dichloromethane solvent. The oxidative wave is typically 

irreversible at >1.7 V and at the detection limit for common solvents.  

1.7.2. Optical properties  

 PDIs display vibronic absorption bands at 450, 490 and 530 nm with very high 

molar absorption coefficient ( ≈ 75,000 L mol-1 cm-1) in most of the organic solvents 

(Figure 1.16A). Density functional theory calculations indicate the transition (S0→S1) 

is described as a HOMO to LUMO excitation (Figure 1.16B). The most important 

feature of this chromophore is its mirror image fluorescence at 535, 580 and 635 nm  
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Figure 1. 16. A) absorption and emission spectra of un-substituted PDI in toluene; B) 

frontier molecular orbitals HOMO and LUMO calculated from B3LYP/6-31++G** (Adapted 

with permission from ref. 46. Copyright © 2016, American Chemical Society).  

(Figure 1.16A) with nearly quantitative (F = 0.98) fluorescence quantum yield in 

organic solvent such as toluene, chloroform and dichloromethane. 

1.7.3. Applications of PDIs  

For several decades, PDIs have been utilized for numerous fundamental 

studies and in commercial products as well due to their enhanced stability and 

interesting opto-electronic properties[46]. Supramolecular materials systems of PDI 

dyes are in particular devoted to conventional and single molecule fluorescence 

spectroscopy, photo-induced energy and electron transfer processes, and more 

recently to singlet fission and artificial photosynthesis. 

1.7.3.1. Non-fullerene acceptor in solar cells  

PDIs are used as n-type semiconductor in optoelectronic devices. Core 

substituted PDIs are promising candidates as non-fullerene acceptor materials for 
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organic solar cells. The functionalization of PDIs in the bay positions using chemical 

groups with different electron donating abilities and with steric hindrance is a 

versatile tool to modify both the optoelectronic properties and the morphology in 

the solid state. Very recent report shows PDI based polymeric acceptor exhibit 

power conversion efficiency of 7.5% in all polymer bulk heterojuction solar cell 

(Figure 1.17)[47]. 

1.7.3.2. Artificial photosynthesis  

The development of efficient artificial systems for solar energy conversion is 

important for sustainable energy utilization. Self-assembly of chromophores at 

specific distances and orientations to provide particular photophysical or redox 

functions is critical in such applications. PDIs are well known for their spontaneous 

π-stacked self-assembly (Figure 1.18A)[48], which led the researchers to construct  

 

Figure 1. 17. Molecular structure of PDI based polymer and corresponding I-V plot obtained 

for the polymer bulk heterojuction solar cell (Adapted with permission from ref. 47. 

Copyright © 2016, John Wiley and Sons). 
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novel nanostructures with this chromophore. Photoinduced electron transfer 

(PET)reactions involving PDIs, primarily as electron acceptors, have been widely 

studied for both intermolecular and intramolecular PET between PDI-based 

acceptors and electron donors in monomeric and self-assembly. The ability to self-

assemble identical or very similar chromophores, demonstrating energy 

funnelling and electron transfer can greatly simplify the design of an artificial 

reaction center (Figure 1.18B)[49]. 

 

Figure 1. 18. A) Model for the columnar PDI aggregates (Adapted with permission from ref. 

32. Copyright © 2012, Royal Society of Chemistry); B) self-assembled artificial 

photosynthetic system based PDI chromophore (Adapted with permission from ref. 49. 

Copyright © 2004, American Chemical Society) 

1.7.4. Disadvantages of PDI  

Despite being well-explored for photo-functional applications, PDIs lack 

desirable features such as access to triplet state and solid-state fluorescence. 

Negligible ISC: Perylene and perylene based chromophores exhibit very poor 

ability to undergo ISC from the singlet excited state. Organic triplet excited states are 

getting more attention due to their longer lifetime and paramagnetic properties.  
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Unfortunately, PDI dyes exhibit negligible intersystem crossing (ISC <0.01) due to 

the lack of significant SOC in the molecule. 

Quenched fluorescence in solid state: Though PDIs exhibit desirable photophysical 

properties in the solution state, stacking nature leads to severely quenched emission 

which has greatly hindered the exploitation of their properties and further 

applications in the solid state[50].  

1.7.5. Strategies reported in the literature 

Literature survey shows that various strategies have been adopted to access the 

long-lived triplet excited state in the perylenediimide chromophores. Ford et. al. 

reported bimolecular sensitisation mediated triplet generation of PDI by triplet-

triplet energy transfer[51]. Tilley et. al. reported thionation of the carbonyl groups in 

PDI resulted in ultrafast intersystem crossing in the chromophore[52]. 

Wasielewski[53], Castellano[54], Würthner[55] and co-workers have shown the 

heavy metal incorporation promotes the ISC in the metal-PDI complexes.  Torres[56],  

Janssen[43] and co-workers have reported the charge transfer mediated triplet 

generation of PDI in D-A dyad and triad systems. Unprecedented triplet generation 

was reported by Flamigni and co-workers in the asymmetrically substituted PDI 

derivatives[57].  

1.8. Objective of the thesis  

 Though PDIs are well explored for the photo-functional applications, most of 

the applications of PDIs focus on the photophysical properties arising from the 
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singlet excited state; investigations dedicated to their triplet excited state are rather 

limited. Although PDIs consist of 4 carbonyl groups in the peri region, no significant 

ISC is observed in the molecule upon excitation. Triplet excited states are 

surprisingly important due their crucial role in photocatalysis, high performance 

solar cells, bio-imaging and photovoltaics.  Reported methods to access triplet 

excited state in PDIs include bimolecular sensitization, metal induced heavy atom 

effect, upgrading carbonyl to thionyl functionality and bay imidisation. Designing of 

heavy atom free, PDI systems for efficient ISC is still burgeoning area of research. 

This dissertation is devoted to study the novel strategies to enhance the efficiency to 

ISC in core-twisted PDI based chromophores. 
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Chapter 2 
Access to Triplet Excited State in Core-Twisted 
Perylenediimides 
 

Abstract 

Solvent-free crystal structure of N,N-bis(propylacetyl)-1,6,7,12-tetrabromoperylene-

3,4:9,10-bis(dicarboximide), PDI-Br4, obtained by X-ray diffraction reveals the core-

twisted perylene motif having π−π stacks at an interplanar separation of 3.7Å. Slip-

stacked arrangement of PDI units in PDI-Br4 arises due to the presence of bulky 

bromine atoms. Femtosecond pump−probe measurements of monomeric PDI-Br4 in 

toluene reveal ultrafast intersystem crossing (τISC < 110 fs) when excited at 400 nm. 

Triplet quantum yield (ΦT) of 19 ± 1% and 105 ± 5% for PDI-Br4 in toluene and 

vapour annealed polycrystalline 60 nm thick film respectively are estimated from 

nanosecond transient absorption measurements. Quantum chemical calculations 

show that the combined effects of heavy atom and core-twist in PDI-Br4 can activate 

the intersystem crossing by altering the singlet−triplet energy gap. Enhanced 

quantum yield accounts for the singlet fission mediated generation of triplet excited 

state in the PDI-Br4 thin film. 
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2.1. Introduction 

 Perylenediimide (PDI) chromophore received immense attention in 

materials and biological applications due to remarkable photo-, thermal- and 

chemical stability[58-60]. Despite being well-explored for photo-functional 

applications[50, 61-68], PDIs lack essential features such as solid-state 

fluorescence and access to triplet state. Reported methods to access triplet state 

of PDI (Scheme 2.1A) makes use of bimolecular triplet sensitization[51],  

 

Scheme 2.1. A) chemical structure of PDI, thionated PDI and Pt-PDI complex; B) energy 

level diagram for singlet exciton fission between two interacting chromophores 1 and 2 

(Adapted with permission from ref. 27. Copyright © 2009, American Chemical Society); C) 

schematic of singlet fission in polycrystalline thin film of slip-stacked PDI (Adapted with 

permission from ref. 41. Copyright © 2009, American Chemical Society). 
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incorporation of sulphur[52] and  heavy metals such as Ir[53], Pt[54], Ru[55] that 

promote intersystem crossing (ISC). Unprecedented triplet state of perylenediimide 

was observed in unsymmetrically substituted PDIs[57]. Though the triplet excited 

state is achieved in monomeric form, most of the organic molecules undergo triplet-

triplet annihilation and lose their triplet excited state properties upon formation of 

assembly. Retention/generation of the triplet excited state in assembled/solid-state is 

still a challenging task in organic materials.  

Generation of triplet excited state in assembled chromophoric systems through 

singlet exciton fission (SF) process is an emerging topic of interest (Scheme 2.1B). SF 

is a spin allowed process whereby a singlet excited chromophore is 

energetically down-converted into two triplet excitons. SF mediated formation 

of two triplet excitons per photon can, in principle, increase the Shockley-

Queisser limit for power conversion efficiency from 32% to 44% in solar 

cells[27, 69-71]. Till date, SF has been observed in crystalline anthracene[28], 

tetracene[29], pentacene[30], 1,3-diphenylisobenzofuran[31], rubrene[32], 

bipentacene[33], carotenoid[34], hexacene[35], TIPS-pentacene[36-37], 

zeaxanthin[38], terrylene[39], thiophene polymer[40] and perylenediimide[41] 

having triplet quantum yield ranging from 1-200%. SF was also observed in 

concentrated solution of TIPS-pentacene[72] and very dilute solution of bi-

pentacene[73] with quantitative triplet yield. Recently, crystal packing and 

crystallite size dependence on the rate of SF is reported in tetracene 

polymorphs[70, 74]. Two pathways for SF where formation of polar transition 
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state followed by triplet generation and a direct single step mechanism have 

been reported[26]. Wasielewski and coworkers reported significant triplet 

formation in co-facial/slip-stacked PDI dimers[42-43] through polar transition state 

and polycrystalline thin films of slip-stacked PDI (Scheme 2.1C) through single step 

mechanism[41]. State-of-the-art theory supports that slip-stacked cofacial 

arrangement of molecular pairs is a prerequisite for singlet fission[75-76].  

Access to triplet excited states in monomeric/aggregate/single crystalline 

PDI based chromophores continues to possess immense interest[77]. Our 

ongoing interest towards the twisted chromophoric structures[78-81], for 

promising excited state properties, encouraged us to investigate the influence 

of core-twist in generating the triplet excited state in monomeric and 

crystalline PDI. Here we report the first example of the heavy atom and core-

twist induced triplet formation in monomeric PDI-Br4[82]. Interestingly, slip-

stacked arrangement of PDI-Br4 exhibits combination of spin-orbit (SO) 

coupling and SF mediated triplet generation in polycrystalline thin film. 

2.2. Synthesis, characterisation and crystal structure of PDI-Br(0-4) 

 Brominated perylenediimide derivatives PDI-Br(1-4) were synthesised and 

characterised as per the reported procedure (Scheme 2.2)[83]. Except for PDI-Br3, 

synthesis of PDI-Br1-2/PDI-Br4 has been reported[84-87]. Würthner and co-workers 

have explored the extent of core-twist upon halogenation of PDI at bay-positions[88]. 

X-ray structure of crystalline solvated PDI-Br4[88] and crystalline solvent-free PDI-
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Br2[84] are well-documented, however, crystalline solvent-free PDI-Br4 are yet to be 

reported. Slow evaporation from different ratios of dichloromethane/hexane mixture 

offered fluorescent crystals of PDI-Br2-4 in triclinic space group P-1 (Table 2.1). -  

Table 2.1. Crystallographic data and refinement parameters for the derivatives PDI-Br2-4. 

 PDI-Br2 PDI-Br3 PDI-Br4 

formula C34H24Br2N2O8 C34H23Br3N2O8 C34H22Br4N2O8 

formula wt. 748.3710 827.2610 906.1631 

colour, shape Red, Needle Red, Block Red, Block 

crystal system Triclinic Triclinic Triclinic 

space group P-1 P-1 P-1 

a, Å 4.8146(7) 11.4678(6) 10.800(5) 

b, Å 9.1602(14) 12.2449(6) 11.197(5) 

c, Å 17.672(3) 12.6152(6) 13.581(5) 

α, degree 76.925(5) 84.037(2) 81.322(5) 

β, degree 84.870(5) 82.349(2) 77.257(5) 

γ, degree 75.057(5) 70.582(2) 89.597(5) 

V, Å3 733.11(19) 1652.44(14) 1582.9(12) 

temp, K 296 296 296 

dcalcd, g/cm-3 1.694 1.820 1.900 

no. of reflections collected 10852 5794 5384 

no. of unique reflections 4884 4441 3956 

2max, degree 50 50 50 

no. of parameters 218 433 435 

R1,  wR2 (I > 2(I)) 0.0443, 0.1260 0.0985, 0.3155 0.0305, 0.0719 

R1, wR2 (all data) 0.0596, 0.1463 0.1217, 0.3374 0.0563, 0.1038 

goodness of fit 1.142 1.116 1.083 

CCDC number  1402604 1402605 1402606 
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interactions between the neighboring PDI units appear unimpeded due to solvation 

in crystalline PDI-Br3 (vide infra). The present study focuses on the impact of core-

twist in the photophysical properties of PDI-Br0-4 (Scheme 2.3) in monomeric 

(solution) vs. crystalline state.  

 

Scheme 2.2. Synthesis scheme for PDI-Br0-4. 

 The dihedral angle between the two identical halves (long axis) is found to be 

2.4⁰, 39⁰ in PDI-Br2 and PDI-Br4, respectively. PDI-Br3 exhibits dihedral angle of 27.9⁰ 

and 37.8⁰ between the two non-identical halves due to asymmetry, suggesting 

varying degree of core-twisting nature of PDI on successive bromination at the bay 

region. In the solvent-free single crystals of PDI-Br2, face to face -surfaces are found 

at a distance of 3.51 Å along with the transverse shift of 2.93 Å and longitudinal shift 

of 1.0 Å (Figure 2.1A and D). Adjacent surfaces are found at the distance of 3.54 

Å along with the transverse shift of 2.39 Å and longitudinal shift of 4.23 Å in PDI-Br3 

PTCDA PTCDA-Br0-4 PDI-Br0-4 PDI(OH)2-Br0-4 

(i) Br2/I2, sulphuric acid, 100°C 
(ii) 3-aminopropanol, N,N-dimethylacetamide, 1,4-dioxane 
(iii) Acetic anhydride, pyridine 
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Scheme 2.3. Molecular structures of the derivatives under study. 

crystals (Figure 2.1B and E). Solvent free single crystals of PDI-Br4 exhibit nearest  

surfaces at the distance of 3.66 Å along with the transverse shift of 2.40 Å and 

longitudinal shift of 5.64 Å (Figure 2.1C and F). On increasing the number of 

bromine atoms at the bay region, perylenediimide exhibits a gradual increase in the 

distance and the longitudinal shift between the adjacent PDI units in the crystalline 

state. Orbital overlap between adjacent perylenediimide units in PDI is estimated 

from X-ray crystal structure to be 46%[59]. Percentage overlap between the vicinal 

PDI surfaces in crystalline state is found to be 22.1% for PDI-Br2, 16.8% for PDI-Br3 

and 9.5% for PDI-Br4 (Figure 2.1D-F). Quantum theory of atoms in molecules 

analysis suggests the presence of C=O•••[89-90] interaction at a distance of 3.10 Å 

between the neighboring PDI units in crystalline PDI-Br4. PDI-Br3 displays C-

H•••[91] interaction at a distance of 2.76 Å along with the C-Br•••[92-93] 

interaction at a distance of 3.48 Å. 
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Figure 2.1. Crystal packing of the derivatives PDI-Br2-4. A), B) and C) side view of the 

dimers in PDI-Br2, PDI-Br3 and PDI-Br4 respectively; D), E) and F) corresponding top view 

(coloring show the area of π overlap; Reprinted with permission from ref. 82. Copyright © 

2016, American Chemical Society).  

2.3. Results and discussions 

2.3.1. Electrochemical studies 

Cyclic voltammetry measurement of PDI in DCM (Figure 2.2A) shows two 

reversible reduction peaks (-0.547 V and -0.728 V) with reference to Ag/AgCl 

electrode, characteristic of PDI, as reported[94]. On successive increase in number of 

electron releasing bromine atoms per PDI unit, reversible reduction potential (Figure 

2.2B) is significantly decreased to -0.319 V and -0.528 V for PDI-Br4. Decrease in the 

reduction potential of PDI-Br4 when compared to the PDI could arise from the 

presence of additional bromine atoms in PDI-Br4. 
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Figure 2.2. A) Cyclic voltammogram of the derivatives (1 mM) PDI-Br0-4 in 

dichloromethane in the presence of tetrabutylhexafluoroammoniumphosphate (100 mM) with 

respect to Ag/Ag+ electrode; and B) Tabulation of the first and second reduction potential of 

the derivatives PDI-Br0-4 in dichloromethane with respect to the Ag/Ag+ reference electrode. 

2.3.2. Photophysical studies in solution state 

UV-Vis absorption spectra of PDI-Br0-2 in toluene (Figure 2.3A) exhibit three 

distinct bands corresponding to S0S1 transition, oriented along the longitudinal 

axis[95]. Red-shifted absorption maxima with the increase of bromine atoms is fully 

consistent with the decreasing trend of S0S1 transition energy evaluated at time 

dependent density functional theory (TD-DFT) method. Whereas S0S2 transition is 

symmetry forbidden in planar PDIs (i.e. PDI-Br0-2), significant absorbance at 425-440 

nm in PDI-Br3-4 arises due to core-twist, consistent with earlier reports[95-96]. 

Oscillator strength calculated from TD-DFT method for S0S2 transition shows 

gradual increase from PDI (0.00) to PDI-Br4 (0.11), in agreement with our 

experimental data. Steady state fluorescence spectrum (Figure 2.3B) of PDI in  
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Figure 2.3. A) absorption; B) emission (ex = 480 nm) and C) time-dependent fluorescence 

studies (ex = 480 nm and monitored at their emission maxima) of the derivatives PDI-Br0-4 in 

toluene Reprinted with permission from ref. 80. Copyright © 2016, American Chemical 

Society).  

toluene shows vibronic bands at 536, 577 and 627 nm as reported[51]. On increasing 

the number of bromine atoms per PDI unit, fluorescence quantum yield (Table 2.2) is 

reduced from F = 97% (for PDI) to 64% (for PDI-Br4). Similar to UV-Vis absorption,  

Table 2.2.  Photophysical properties of derivatives PDI-Br0-4 in toluene solution. 

 

Solution (Toluene)  

abs, nm 
molar, 

L mol-1 cm-1 
em, nm 

F, 

ns 
F, % 

T, 

% 



(S1-T2), eV 

PDI 459, 490, 525 71000 536, 577, 627 4.17 97 (99)*  < 1 0.2923 

PDI-Br 459, 490, 526 60088 543, 582, 630 4.49 97 (97)* < 1 0.2702 

PDI-Br2 460, 491, 526 51587 550, 588, 640 4.73 94 (96)* 1 0.2444 

PDI-Br3 
425, 462, 494, 

530 
39801 561, 603 4.89 85 (83)* 5 0.1792 

PDI-Br4 
440, 465, 499, 

532 
26743 570, 610 4.13 64 (64)* 18 0.1171 

*Quantum yield determined in 1, 2-dibromoethane confirms the absence of external heavy 
atom effect imparted by bromine atoms. 
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emission maxima also exhibit red-shift with increase in number of bromine atoms 

(Table 2.1). Similar F for PDI-Br0-4 in dibromoethane and toluene suggests the lack 

of external heavy atom effect in promoting ISC. Upon excitation at 439 nm, 

picosecond time-resolved fluorescence measurement shows the singlet excited state 

lifetime of PDI-Br0-4 in the range of 4.1-4.9 ns (Figure 2.3C) by monitoring at the 

respective emission maximum. 

2.3.3. Transient absorption measurement in solution 

2.3.3.1. Femtosecond transient absorption spectroscopy 

 Femtosecond transient absorption (fTA) measurements were performed on 

PDI-Br0-4 in toluene to investigate the influence of core-twist on the excited state 

properties.  Upon excitation at 400 nm, using 110 fs laser pulse, PDI-Br0-4 in toluene 

exhibit ground state recovery at 500–600 nm and a positive band around 600-680 nm 

as reported for bay substituted PDIs (Figure 2.4)[97]. Singular value decomposition 

(SVD) followed by global analyses of A versus time and wavelength based three 

dimensional map of PDI-Br0-4 were carried out to understand the principal 

components responsible for the absolute spectra. Decay associated difference spectra 

(DADS) of PDI-Br0-2 (Figure 2.4A-C and F-H) displayed two principal components: i) 

ground state depletion (S0Sn)/stimulated emission (S1S0; 4ns) and ii) positive 

absorption due to S1Sn transitions[97]. DADS (Figure 2.4D, E, I and J) of PDI-Br3-4 

exhibited three principal components that are attributed to i) ground state depletion 

(S0Sn)/stimulated emission (S1S0) and positive absorptions due to ii) S1Sn and 

iii) T1Tn transitions[53]. A representative fTA and SVD spectra corresponding to  
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Figure 2.4. A), B), C), D) and E) fTA spectra of the derivatives PDI, PDI-Br, PDI-Br2, PDI-

Br3 and PDI-Br4 respectively; F), G), H), I) and K) corresponding decay associated difference 

spectra obtained from SVD analysis. 
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PDI-Br4 in toluene is explained in detail. Right singular vector at 500-680 nm (4ns) 

corresponds to i) S0Sn (500-570 nm) and ii) S1S0 (550-600 nm) transitions, 

respectively. Right singular vectors at 550-650 nm and 600-680 nm correspond to Tn 

T1 (4ns) and SnS1 (<0.1ns) transitions, respectively, consistent with the earlier 

reports[41]. 

2.3.3.2. Nanosecond transient absorption spectroscopy 

To further characterize the long-lived triplet excited state of PDI-Br3-4, 

nanosecond transient absorption (nTA) measurements were performed. nTA 

measurements of PDI-Br0-4 in toluene were carried out upon excitation of the 

samples with 10 ns, 355 nm and 532 nm laser. Photoexcited PDI shows weak signal 

corresponding to triplet excited state as a consequence of poor ISC (T 0.3%)[51]. 

Substitution of one/two bromine atoms at the bay region of PDI resulted in slight 

increase of ISC (T ≤ 1%), estimated using triplet-triplet energy transfer method 

upon photoexcitation at 532 nm[51]. Ultrafast inherent fluorescence vs. slower ISC 

could be attributed to the lack of heavy atom effect in PDI-Br1-2, which is in good 

agreement with reported perylene based chromophoric systems[98].  

Upon excitation at 532 nm, PDI-Br3-4 in toluene exhibit strong absorption bands 

at 370 nm and 575 nm in addition to ground state depletion at 440, 490 and 530 nm 

(Figure 2.5). Observed nTA spectra of PDI-Br4 in toluene is similar to the reported 

spectra obtained from indirect excitation of PDI using anthracene as triplet 

sensitizer[51]. Due to the stronger bleach at 450-550 nm, positive absorption at 480  
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Figure 2.5. nTA spectra of PDI-Br4 in toluene upon excitation with 532 nm laser. Inset 

shows the kinetics of bleach recovery and triplet decay monitored at respective wavelength 

(Reprinted with permission from ref. 80. Copyright © 2016, American Chemical Society).  

nm and 500 nm is diminished in the spectra as compared to the reported spectra. T 

of PDI-Br3 and PDI-Br4 are calculated to be 5±1% and 18±1%, respectively, which is 

significantly higher when compared to PDI-Br0-2. Identical rate constants (kT  2.5 x 

106 s-1) for the decay of positive absorption band at 570 nm and the recovery of 

bleach at 530 nm in PDI-Br2-4 suggests that the triplet decay quantitatively 

regenerates the ground state. It is also found that the rate of decay of the triplet 

excited state remains independent of degree of bromination in PDI-Br2-4. Non-linear 

increase in the core-twist angle and T of PDI-Br0-4 with the increase in number of 

bromine atoms suggest the dominant role of core-twist[99] in facilitating the triplet 

generation. Importance of twist angle to facilitate ISC in chromophoric systems was 

comprehensively established by Caldwell and co-workers[99].  
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Triplet energy level of PDI-Br4 in toluene (ET = 313 kcal/mol) is 

experimentally obtained through triplet-triplet energy transfer between PDI-Br4 and 

an appropriate standard triplet energy donor/acceptor using Sandros method[51]. 

Low-lying triplet energy levels for PDI-Br0-4 were calculated from TD-DFT method 

using the B3LYP/6-311G+(d, p)[100-101] basis set to understand the driving force for 

enhanced ISC. Calculated triplet energy level of PDI-Br4 (ET = 29.7 kcal/mol) is in 

good agreement with the experiment. Enhanced ISC in PDI-Br3-4 could arise as a 

consequence of i) core-twist promoted asymmetry in the molecule and ii) close lying 

singlet and triplet  (ES-T) energy levels (Table 2.2). To understand the role of higher 

excited state population, nTA measurements of PDI-Br4 toluene solution was carried 

out exciting at different wavelengths. Observed similar quantum yield of triplet 

formation upon excitation at 355 nm (T = 19±1%) and 532 nm (T = 18±1%) suggests 

that the rate of Sn→S1 internal conversion is faster than the rate of Sn→Tn intersystem 

crossing as reported earlier[53]. 

2.3.4. Optical properties of PDI-Br0-4 in polycrystalline thin film 

Thin films of PDI-Br0-4 were prepared by spin-coating the chloroform solution 

on quartz plate. The films were dried in the vacuum and stored in nitrogen 

atmosphere prior to the experiments. PDI-Br4 thin film thickness was measured to be 

605 nm using profilometry (Veeco Dektak 150 surface profiler; Figure 2.6B). 

Resemblance between experimental and simulated powder X-ray diffractogram 

indicates the polycrystalline nature (Figure 2.6A) of PDI-Br4 thin film. Continuous-  
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Figure 2.6. A) Powder XRD pattern of polycrystalline thin film of PDI-Br4 along with the 

stimulated P-XRD pattern obtained from single crystal; B) profilometeric traces of PDI-Br4 

polycrystalline thin film (thickness is 60±10 nm). 

wave resonance Raman spectroscopic measurements of PDI-Br4 in solution 

(monomeric) and thin film (polycrystalline) state were performed to investigate the 

structural integrity (Figure 2.6A). PDI-Br4 in toluene exhibits Raman bands at 1332, 

1380, 1586, 1606 and 1735 cm-1 as reported earlier[102]. Observed considerable 

change in the intensities of corresponding bands of PDI-Br4 thin film compared to 

solution state is attributed to the crystal packing effects (vide supra). 

 UV-Vis spectrum of PDI thin film (Figure 2.7A) shows broad band at 390, 470, 

500, 540, and 590 nm. Upon successive bromination, vibronic band intensity ratio 

(A500 nm/A540 nm) indicates weak exciton interactions in core-twisted PDI-Br3-4 when 

compared to strong exciton interactions in planar PDI-Br0-2[65]. Dissimilar degrees of 

exciton interactions between the neighbouring chromophoric units in core-twisted 

vs. planar PDIs is consistent with the extent of - overlap evaluated from the X-ray 

crystal structures. Upon excitation at 450 nm, PDI thin film exhibits very weak and  
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Figure 2.7. A) absorption and B) emission (ex= 480 nm) spectra of the derivative PDI-Br0-4 

in polycrystalline thin film state.  

broad emission (f  < 1%) around 600-800 nm (Figure 2.7B, Table 2.3). On successive 

bromination, gradual blue-shift in the emission maximum could be attributed to the 

systematic decrease in the extent of exciton interaction in PDI-Br1-4 thin film. Core-

twisting the PDI chromophore in PDI-Br1-4 resulted in a gradual increase of 

fluorescence quantum yield (F = 2±0.4% for PDI-Br; F = 12±1% for PDI-Br4) in thin 

film state (Table 2.3). Decrease in the extent of adjacent PDI-PDI orbital overlap,  

Table 2.3.  Photophysical properties of derivatives PDI-Br0-4 in polycrystalline thin film. 

 abs, nm em, nm F , % 

PDI 390, 470, 500, 555, 590 650-800 (bs) 0.01 

PDI-Br 400, 475, 495, 545 635 0.02 

PDI-Br2 400, 500, 540 610 0.03 

PDI-Br3 425, 500, 535 595 0.07 

PDI-Br4 440, 505, 550 570, 620 0.12 
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upon successive bay-halogenation, could be attributed to the core-twist dependent 

decrease in the free energy for self-assembly[95]. 

 Picosecond time-resolved fluorescence measurements of PDI-Br(3-4) aggregates 

in thin film reveal significantly shorter lifetime ( ≤ 2.0 ns) when compared to the 

characteristic lifetime (  4.0 ns) of monomeric PDI chromophore in solution. An 

increase in the rate of radiative decay of PDI-Br3-4 in thin film (݇  = 5 x1010 s-1) when 

compared to that in solution (݇  = 2.5 x 1010 s-1) confirms J-type aggregation in thin 

film state. Slip angles calculated from crystal structure analysis of PDI-Br3 (= 45°) 

and PDI-Br4 (= 43°) further confirms the existence of J-aggregate ( ≤ 54°) in twisted 

PDIs[103]. 

2.3.5. Transient absorption measurement in polycrystalline thin film 

Nanosecond transient absorption measurements of polycrystalline thin film of 

PDI-Br0-4 were performed upon exciting with 10 ns, 355 and 532 nm laser. Upon 

exciting at 532 nm, PDI-Br0-4 exhibit ground state depletion at 500–580 nm along with 

the positive absorption at 460 and 590 nm. nTA spectra of PDI-Br0-4 thin film is in 

good agreement with the nTA spectra of polycrystalline thin films of N,N bis(n-

octyl)-2,5,8,11-tetraphenyl-PDI reported earlier[41]. Absence of positive absorption 

at 540 nm of PDI when compared to the reported nTA spectra[41] could be 

corroborated to the stronger bleach at 500-600 nm[51]. Detailed characterization of 

long-lived triplet excited state observed at 460 nm and 590 nm, was further carried 

out for thin film of PDI-Br4 as a representative case (Figure 2.8). Observed lifetime 
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(்	  700 ns) of 3*PDI in thin film is significantly longer when compared to that in 

solution (்	 400 ns).  

2.3.6. Singlet exciton fission in polycrystalline thin film 

 Linear dependence of A from nTA spectra on the laser intensity suggests that 

the singlet-singlet annihilation do not kinetically compete with the triplet formation 

in PDI-Br4 thin film. Unlike the ultrafast appearance of 3*PDI in polycrystalline thin  

 

Figure 2.8. A) nTA spectra of  PDI-Br4 in polycrystalline thin film upon excitation at 532 

nm;  B) corresponding kinetics profile of the triplet decay monitored at 600 nm.  

film of N,N bis(n-octyl)-2,5,8,11-tetraphenyl-PDI through dominant SF mechanism 

(T = 14020%), PDI-Br4 under similar conditions could exhibit via SO coupling 

and/or SF. Upon photoexcitation at 532 nm, T in thin film of PDI-Br4 was 

determined employing the method reported by Wasielewski and co-workers[41]. For 

PDI-Br4, the triplet yield measured in 60 nm thick film is found to be 795% (Figure 

2.9) when compared to 18% in monomeric PDI-Br4 in toluene. Enhanced T in 

polycrystalline thin film compared to monomeric PDI-Br4 suggests the generation of 
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triplet excited state via SF. Singlet and triplet energy level calculation (Figure 2.9A) 

show the possibility for endogonic SF from S1 (S1≤2T1) and exergonic SF from Sm (Sn 

≥2T1; m ≥ n). Based on the TD-DFT calculations, observed low yield of SF on 532 nm 

excitation could be due to the endogonic nature of the process (S1 ≤ 2T1). By exciting 

to higher excited state, yield of SF mediated triplet generation could be improved 

due to exergonic nature (Sn ≥ 2T1).  To explore the existence of exergonic SF from 

higher excited state, PDI-Br4 in polycrystalline thin film was excited with 355 nm 

laser. PDI- Br4 in polycrystalline thin film exhibits enhanced triplet generation 

(1055%, Figure 2.10B), when compared to endogonic SF process (795%), which is 

in agreement with the TD-DFT calculations (Figure 2.9).  Involvement of higher 

singlet excited state followed by exergonic SF process in polycrystalline pentacene 

has been recently reported by Friend and coworkers[33, 72]. Slip-stacked 

arrangement and favourable singlet-triplet energy levels [E(Sm)  2E(Tn); where m≥n]  

 

Figure 2.9. A) calculated singlet and triplet energy levels (ISC- intersystem crossing; SF- 

singlet fission); B) triplet state decay kinetics of PDI-Br4 in polycrystalline thin film 

monitored at 600 nm upon excitation with 355 and 532 nm.  
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may promote SF mediated triplet population in thin film of PDI-Br4. Absence of 

quantitative SF in PDI-Br4 thin film could arise due to i) less efficient SF and/or ii) 

significant triplet-triplet annihilation process as reported earlier[74].  fTA 

measurements in polycrystalline thin film of PDI-Br4 could not identify the existence 

of charged intermediates ruling out the possibility of triplet formation via charge 

recombination, consistent with the polycrystalline thin film of N,N bis(n-octyl)-

2,5,8,11-tetraphenyl-PDI reported by Wasielewski and coworkers[26, 41].  

 

Figure 2.10. Plausible Jablonski diagram of PDI-Br4 in monomer and polycrystalline thin 

film; energy levels are calculated from TDDFT (B3LYP/LANL2dz) method. (IC - internal 

conversion; ISC - intersystem crossing; SF - singlet fission; ΦF - fluorescence quantum yield; 

ΦT - triplet quantum yield; Reprinted with permission from ref. 82. Copyright © 2016, 

American Chemical Society).  
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To further confirm the existence of SF process, qualitative estimation of triplet 

generation in optically matched neat and polymethylmethacrylate (PMMA) blend 

thin films were carried out. nTA spectra of PMMA blend PDI-Br4 film exhibits 

reduced triplet generation when compared to the neat film. Marginally longer 

lifetime (T(PMMA)=850 ns) of PDI-Br4 triplet in blend film when compared to the neat 

film (T=700 ns) could arise from the stabilization of triplet excited state in PMMA 

matrix, as reported earlier[104]. In the presence of PMMA, decrease in triplet 

generation could be attributed to the frustration of the interaction of the PDI-Br4 

chromophores in the blend film, thereby reducing the efficiency of SF mediated 

triplet generation. 

2.4. Conclusions 

In conclusion, we have studied the effect of bromination at the bay region on 

the photophysical properties of PDI in solution (monomeric) and polycrystalline 

state. We observed a triplet quantum yield of 191% for core-twisted PDI-Br4 

monomer (Figure 2.10A). Core-twist induced asymmetry in the molecular geometry 

and energetically accessible Tn levels are attributed to the observed triplet 

generation. Existence of slip stacked arrangement and suitable singlet-triplet energy 

levels [E(Sm)  2E(Tn); where m≥n] resulted in SO and SF mediated triplet generation 

(T = 1055%) in polycrystalline PDI-Br4 thin-film (Figure 2.10). Higher excited state 

population facilitates exergonic SF mediated triplet generation in polycrystalline 

thin-film of core-twisted PDI-Br4. Core-twisted PDI could be a potential candidate 
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for energy conversion devices due to its retention/generation of triplet excited state 

in polycrystalline thin-film state.   

2.5. Experimental section 

2.5.1. Synthesis and characterisation 

Synthesis of PTCDA-Br1-4: 7.5 g of perylene-3,4,9,10-tetracarboxylic dianhydride 

(PTCDA) was stirred with 80 mL of concentrated sulphuric acid for 4 hours. 500 mg 

of elemental iodine was added and the reaction mixture was heated to 110°C. 1/ 2/ 3 

or 4 equivalents of elemental bromine was added drop wise to synthesise mono, di, 

tri and tetra bromo PTCDA. The reaction mixture was refluxed for 24 hours. After 24 

hours, the product was precipitated by pouring the reaction mixture into 200 mL of 

ice water. The product (PTCDA-Br1-4) was filtered and dried in hot air oven. Owing 

to the insolubility of the compounds, they were taken for next step of synthesis 

without any characterisation. 

Synthesis of PDI-Br0-4: 7.5 g of PTCDA/PTCDA-Br1-4 was taken in 75 mL of N,N-

dimethylacetamide and 75 mL of 1,4-dioxane and stirred for 30 minutes. 2.2 

equivalents of 3-aminopropanol was added dropwise into the reaction mixture at 

80°C. The reaction mixture was refluxed at 110 °C for 2 hours. After 2 hours, the 

reaction mixture was cooled to room temperature and poured into 200 mL of ice 

water. Precipitated product was filtered and dried in hot air oven.  The imidisation 

was confirmed by IR spectroscopic technique by monitoring the C=O stretching. IR 

(KBr, cm-1):  3397, 1694, and 1651. The dried product was acetylated by treating with 

excess equivalent of acetic anhydride in dried pyridine. The final products PDI-Br0-4 

were purified by column chromatography. All the products have been characterised 

by spectroscopic and analytical techniques.  

PDI (yield = 50 %). M.p. > 300 °C. 1H NMR [500 MHz, CDCl3, δ]:  8.58 (d, J= 7.50 Hz, 

4H), 8.49 (d, J = 7.50 Hz, 4H), 4.28 (t, J = 6.5 Hz, 4H), 4.16 (t, J = 6.15 Hz, 4H), 2.08 (m, 
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4H), 1.99 (s, 6H). 13C NMR [125 MHz, CDCl3, δ]: 170.22, 159.51, 135.84, 131.20, 131.05, 

129.42, 126.36, 124.65, 60.73, 39.34, 26.27, 20.92. IR (KBr, cm-1):  1732, 1694 and 1657. 

Elemental analysis: calcd. value for C34H26N2O8: 69.15% C, 4.44% H and 4.74% N; 

found: 69.05% C, 4.50% H and 4.65% N. HRMS (ESI) m/z calculated for C34H26N2O8 

[M]+: 590.5788, found: 590.6107. 

PDI-Br (yield = 30 %). M.p. > 300 °C. 1H NMR [500 MHz, CDCl3, δ]:  9.69 (d, J= 8.00 

Hz, 1H), 8.81 (s, 1H), 8.60 (m, 3H), 8.48 (d, J= 8.00 Hz, 2H), 4.27 (m, 4H), 4.15 (m, 4H), 

2.08 (m, 4H), 1.99 (s, 6H). 13C NMR [125 MHz, CDCl3, δ]:170.48, 159.67, 140.45, 135.70, 

133.20, 131.86, 131.24, 131.08, 129.47, 128.17, 127.33, 126.82, 124.71, 124.04, 60.85, 

39.42, 26.43, 20.84. IR (KBr, cm-1):  1735, 1693 and 1653. Elemental analysis: calcd. 

value for C34H25BrN2O8: 61.00% C, 3.76% H and 4.18% N; found: 61.15% C, 3.68% H 

and 4.14% N. HRMS (ESI) m/z calculated for C34H25BrN2O8 [M]+: 669.4749, found: 

669.5005. 

PDI-Br2 (yield = 70 %). M.p. > 300 °C. 1H NMR [500 MHz, CDCl3, δ]:  9.41 (d, J= 8.20 

Hz, 2H), 8.84 (s, 2H), 8.62 (d, J= 8.20 Hz, 2H), 4.25 (t, J = 7.1 Hz, 4H), 4.11 (t, J = 6.10 

Hz, 4H), 2.04 (m, 4H), 1.95 (s, 6H). 13C NMR [125 MHz, CDCl3, δ]: 171.09, 162.40, 

138.11, 133.16, 132.98, 130.16, 129.31, 128.61, 126.98, 123.04, 122.62, 120.90, 62.20, 

37.86, 27.34, 20.95. IR (KBr, cm-1):  1733, 1698 and 1670. Elemental analysis: calcd. 

value for C34H24Br2N2O8: 54.57% C, 3.23% H and 3.74% N; found: 54.68% C, 3.29% H 

and 3.61% N. HRMS (ESI) m/z calculated for C34H24Br2N2O8 [M]+: 748.3710, found: 

748.3754. 

PDI-Br3 (yield = 60 %). M.p. > 300 °C. 1H NMR [500 MHz, CDCl3, δ]:  9.37 (d, J= 8.05 

Hz, 1H), 8.85 (s, 1H), 8.75 (d, J= 1.50 Hz, 2H), 8.64 (d, J= 8.05 Hz, 1H),4.26 (m, 4H), 

4.13 (m, 4H), 2.06 (m, 4H), 1.99 (s, 3H), 1.98 (s, 3H). 13C NMR [125 MHz, CDCl3, δ]: 

170.05, 159.14, 136.27, 132.67, 130.81, 130.25, 129.04, 128.55, 128.32, 127.50, 124.24, 

123.57, 60.44, 39.13, 25.78, 20.46. IR (KBr, cm-1):  1738, 1701 and 1662. Elemental 

analysis: calcd. value for C34H23Br3N2O8: 49.36% C, 2.80% H and 3.39% N; found: 
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49.18% C, 2.92% H and 3.30% N. HRMS (ESI) m/z calculated for C34H23Br3N2O8 [M]+: 

827.2610, found: 827.2967. 

PDI-Br4 (yield = 35 %). M.p. > 300 °C. 1H NMR [500 MHz, CDCl3, δ]:  8.75 (s, 4H), 

4.26 (t, J = 7.05 Hz, 4H), 4.13 (t, J = 6.25 Hz, 4H), 2.04 (m, 4H), 1.8 (s, 6H). 13C NMR 

[125 MHz, CDCl3, δ]: 171.06, 162.20, 136.21, 131.81, 131.45, 124.05, 122.55, 62.09, 37.99, 

27.36, 20.93, IR (KBr, cm-1):  3041, 1675 and 1249. Elemental analysis: calcd. value for 

C34H22Br4N2O8: 45.07% C, 2.45% H and 3.09% N; found: 45.18% C, 2.60% H and 3.05% 

N. HRMS (ESI) m/z calculated for C34H22Br4N2O8 [M]+: 906.1631, found: 906.1724. 

2.6. Appendix 

2.6.1. Materials and methods: 

All chemicals were obtained from commercial suppliers and used as received 

without further purification. All reactions were carried out in oven-dried glassware 

prior to use and wherever necessary. All reactions were performed under dry 

nitrogen in dried, anhydrous solvents using standard gastight syringes, cannulae, 

and septa. Solvents were dried and distilled by standard procedures. TLC analyses 

were performed on precoated aluminum plates of silica gel 60 F254 plates (0.25 mm, 

Merck) and developed TLC plates were visualized under short and long wavelength 

UV lamps. Column chromatography was performed using silica gel of 200-400 mesh 

employing a solvent polarity correlated with the TLC mobility observed for the 

substance of interest. Yields refer to chromatographically and spectroscopically 

homogenous substances. Melting points were obtained using a capillary melting 

point apparatus and are uncorrected. IR spectra were recorded on a Shimadzu 

IRPrestige-21 FT-IR spectrometer as neat thin films between NaCl plates in case of 

liquids and as KBr pellets in the case of solids. 1H and 13C NMR spectra were 

measured on a 500 MHz and 125 MHz Bruker advanced DPX spectrometer 

respectively. Internal standard used for 1H and 13C NMR is 1,1,1,1-tetramethyl silane 

(TMS). All CHN analyses were carried out on an Elementar vario MICRO cube 
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Elemental Analyzer. All values recorded in elemental analyses are given in 

percentages. High Resolution Mass Spectra (HRMS) were recorded on a Agilent 6538 

Ultra High Definition (UHD) Accurate-Mass Q-TOF-LC/MS system using either 

atmospheric pressure chemical ionization (APCI) or electrospray ionization (ESI) 

mode. Thin film samples were prepared by spin-coating saturated chloroform 

solution of PDI-Br0-4 on quartz plate. 

2.6.2. X-ray crystallography:  

 High-quality specimens of appropriate dimensions were selected for the X-ray 

diffraction experiments. Crystallographic data collected are presented in the 

supplementary information. Single crystals were mounted using oil (Infineum 

V8512) on a glass fibre. All measurements were made on a CCD area detector with 

graphite monochromated Mo Kα radiation. The data was collected using Bruker 

APEXII detector and processed using APEX2 from Bruker. All structures were 

solved by direct methods and expanded using Fourier techniques. The non-

hydrogen atoms were refined anisotropically. Hydrogen atoms were included in 

idealized positions, but not refined. Their positions were constrained relative to their 

parent atom using the appropriate HFIX command in SHELXL-97. The full 

validation of CIFs and structure factors of PDI-Br2-4 were performed using the 

CheckCIF utility and found to be free of major alert level. 3D structure visualization 

and the exploration of the crystal packing of PDI-Br2-4 were carried out using 

Mercury 3.1. Percentage (%) overlap was calculated from area of overlapped 

moieties of perylenediimide aromatic rings in the crystal structures.  Percentage of 

overlapped aromatic surface area to total aromatic surface area gives the % 

overlap[105]. 

2.6.3. Spectral measurements:  

 Absorption spectra were recorded in Shimadzu UV-3600 UV-Vis-NIR while 

emission (fluorescence/phosphorescence) and excitation spectra were performed in 
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Horiba Jobin Yvon Fluorolog spectrometer. All spectroscopic experiments were 

performed by using standard quartz cuvettes of path length 1cm for solution in 

dried and distilled solvents. The solution state fluorescence quantum yields were 

determined by using optically matched solutions. Fluorescein dissolved in ethanol 

(Φfl = 79%)[106] was used as the standard. The fluorescence quantum yield was 

calculated as follows,  

                             Φ = 	Φோ 	× 	
ூ
ூೃ
	× 	ೃ


	× 	 ఎ

మ

ఎೃ
మ                                     ---(2.1) 

Phosphorescence measurement was performed in Quartz tube in 

chloroform/ethyl iodide solid glasses at 77K in Horiba Jobin Yvon Fluorolog 

spectrometer. During the measurement, time per flash was 61 and delay after the 

flash was 0.05 ms. 

The solid state quantum yield of model derivative PDI and PDI-Br1-4 were 

measured using an integrating sphere for which the accuracy was verified using 

tris(8-hydroxyquinolinate)aluminium (Alq3) as a standard and is determined to be 37 

± 4 % (reported quantum yield Φfl = 40%)[107]. Fluorescence decay measurements 

were carried out in an IBH picosecond single photon counting system. The excitation 

laser used was 439 nm with a pulse width of less than 100 ps. The fluorescence decay 

profiles were deconvoluted using IBH data station software version 2.1 and fitted, 

minimizing the χ2 values of the fit to 1  0.05.  

2.6.4. Femtosecond transient absorption measurement (fTA): 

 Spectra-physics Tsunami Oscillator (80 MHz, 800 nm) was used as seed for a 

Spectra-Physics Spitfire Regenerative amplifier (1 KHz, 4 mJ). A fraction of the 

amplified output was used to generate 400 nm pump pulse. Residual 800 nm pulse 

was sent through a delay line inside an ExciPro pump-probe spectrometer from CDP 

Systems. A rotating CaF2 plate (2 mm thickness) was used to generate continuum of 

white light from the delayed 800 nm pulses. The continuum of white light was split 
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into two and the streams were used as probe and reference pulses. Transient 

absorption spectra were recorded using a dual diode array detector with a 200 nm 

detection window. Sample solutions were prepared in a rotating sample cell with 

400 m path length. IRF was determined by solvent (10% Benzene in Methanol) two 

photon absorption and was found to be approximately 130 fs at about 530 nm. 

Energy per pulse incident on the sample is attenuated employing 80% neutral 

density filter when required. Toluene solution of the derivatives PDI-Br1-4 and the 

model derivative PDI were pumped with 400 nm laser and probed by the white 

light[108]. 

2.6.5. Nanosecond transient absorption measurement (nTA): 

 Laser flash photolysis experiments of the argon purged solutions were carried 

out in an Applied Photophysics Model LKS-60 laser kinetic spectrometer using the 

second and third harmonic (355 nm and 532 nm, pulse duration ≈10 ns) of a Quanta 

Ray INDI-40-10 series pulsed Nd:YAG laser. Triplet states of the PDI-Br0-4 in toluene 

were confirmed using the measurement of oxygen purged solutions through 

nanosecond flash photolysis studies. Triplet quantum yields[51] upon direct 

photoexcitation (532 nm) were determined by using [Ru(bpy)]C12 in methanol as 

standard (T = 100%), with non-saturating laser intensities. Equal volume of 0.2 m 

solution of -carotene was added to optically matched solutions of reference and the 

sample. The equation for the triplet quantum yield is given by,  

்ߔ         
௦ = ்ߔ	

ோ	x	 ௱ೄ

௱ೃ
	x	 ್ೞ

ೄ

್ೞ
ೄ ିబೄ

	x		 ್ೞ
ೃିబ

ೃ

್ೞ
ೃ                       ---(2.2) 

Where, ்ߔ
௦   and ்ߔ

ோ denote the triplet quantum yield of the sample and 

reference respectively; ܣ߂ௌ and ܣ߂ோ  are transient absorption intensity of �-carotene 

in sample and reference respectively; ݇௦ௌ  and ݇ௌ are decay rate of sample transient 

species before and after the addition of -carotene. ݇௦
ோ  and ݇

ோ  are decay rate of 

reference transient species before and after the addition of -carotene.  
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 The triplet energy of the PDI-Br4 was estimated from rate constants for triplet 

energy transfer by using the Sandros relation[109] given in the following equation,  

               ݇ொ = 	 ݇ௗ(1 (1 + exp	(− ா
்

))ൗ                      ---(2.3) 

where kQ is the bimolecular rate constant for energy transfer, kdiff is the diffusion-

limited value of kQ, and ET is the triplet energy difference between the donor and 

acceptor. The values of kQ were obtained from the slopes of the pseudo-first-order 

decay rate constant (kobs) of the donor triplet versus the concentration of acceptor 

according to the following equation 

                 ݇௦ = 	 ݇ + 	 ݇ொ(ܽܿܿ݁ݎݐ)                              ---(2.4) 

where ko is the first-order rate constant for decay of the donor triplet in the absence 

of acceptor. -carotene and Ru(bpy)3Cl2 were used as triplet energy acceptor whereas 

anthracene, phenanthrene and coronene were used as triplet energy donor in the 

study with PDI-Br4. 

2.6.5.1. Relative triplet yield calculation in solution: 

Triplet quantum yield on exciting at 532 nm = 181% 

Transient absorption on exciting at 355 nm = 0.03 

Transient absorption on exciting at 532 nm = 0.1444 

Ground state absorption at 355 nm = 0.0199 

Ground state absorption at 532 nm = 0.21 

்߮(ଷହହ	) = 	 ்߮(ହଷଶ	)	 × 	
	ଷହହܣ∆
	ହଷଶܣ∆

×
	ହଷଶܣ
	ଷହହܣ

 

்߮(ଷହହ	) = ((181) x 0.03 x 0.1444) / (0.21 x 0.0199) = 191% 

2.6.5.2. Triplet yield calculation for singlet fission: 

Film thickness : 605 nm, 
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Spot size : 0.785 cm2 

Unit cell volume: 1583 Å3 

Formula units/cell: 2 

Excitation wavelength: 532 nm 

Excitation pulse energy: 20.1 mJ 

Absorbance at 532 nm: 0.1950.004 

Absorbance maximum: 0.2400.004 @ 550 nm 

ߦ                                         = ா	.		ఒ	.			.		(ଵିଵషಲ)
	.		

                                            ---(2.5) 

ߦ =
−(1		ଵ݊݉ିଵ.ିܬ	10ଵହ	ݔ	5.034		.	݉݊	532		.	ܬ	0.002 10ି.ଵଽହ)

ܿ݉ଶ	0.785		.	10ି	ݔ	60  

 x 1020 (0.05 4.1132) =  ߦ               

Number of density = 2 molecules / 1.583 x 10-21 cm3 = 1.263 x 1021 

ξ / no. of density = 0.3256 0.01 

Expected bleach = (0.3256 0.01) x (0.240  0.004) = 0.07820.002 

Observed bleach = 0.06160.004 

Number of ground state molecule lost = 0.0616 / 0.0782 = 795 % 

2.6.5.3. Relative triplet yield calculation in polycrystalline thin film: 

Triplet quantum yield on exciting at 532 nm = 795% 

Transient absorption on exciting at 355 nm = 0.01 

Transient absorption on exciting at 532 nm = 0.028 

Ground state absorption at 355 nm = 0.0371 

 Ground state absorption at 532 nm = 0.1386 

்߮(ଷହହ	) = 	 ்߮(ହଷଶ	)	 × 	
	ଷହହܣ∆
	ହଷଶܣ∆

×
	ହଷଶܣ
	ଷହହܣ

 

்߮(ଷହହ	) = ((79±5) x 0.01 x 0.1386) / (0.028 x 0.0371) = 105±5% 
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2.6.6. Computational methods:  

2.6.6.1. Gaussian calculations 

Ground-state optimised structure and harmonic oscillator frequencies were 

computed using density functional theory (DFT) at the Becke’s three parameter 

functional in combination with the Lee-Yang-Parr correlation functional (B3LYP) 

and 6-31+G(d,p) basis set. Vertical excitation energies and oscillator strengths were 

calculated employing time dependent DFT (TD-DFT) at the B3LYP/6-311+G(d,p) 

level of theory. Vertical excitation energy and oscillator strength for the slip stacked 

dimer were calculated from TD-DFT at the B3LYP/LANL2dz level of theory. All 

computations were performed with the Gaussian 09 program suite[110]. 

2.6.6.1. Quantum theory of atoms in molecules (QTAIM):  

The wave function for the derivative PDI-Br3-4 are obtained employing the 

geometries taken from the crystal structure using Gaussian set of codes at B3LYP/6-

31+G(d,p) level. Quantum theory of atoms in molecules (QTAIM) analysis aims at 

understanding the description of interatomic interaction in the single crystal X-ray 

structure. A bond is defined along the bond line between two nuclei, called a bond 

path, along which electron density is concentrated. In a three dimensional space 

there are four types of critical points, corresponding to non-degenerate points: 

termed (3, -3), (3, -1), (3, +1) and (3, +3). The (3, -3) and (3, +3) types represent a 

maximum (which corresponds to a nuclear position) and a minimum, respectively. 

While (3, -1) and (3, +1) types represent saddle points called bond critical points and 

the ring critical points, respectively. The bond critical point (BCP) is a point along the 

bond path at the interatomic surface, where the shared electron density reaches a 

minimum. The physical characteristics of the BCPs [the electron density at BCP, 

(rBCP), and its Laplacian, 2(rBCP)] reveal the approximate measure of the 

amount of electron density built up in the bonding region and as such could be 

taken as characteristic of the bond. When 2(rBCP) < 0 and is large in magnitude, 

(rBCP) is also large which means that there is a concentration of electronic charge in 
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the internuclear region. This is also an indication of a sharing of electronic charge 

between both nuclei that defines the covalent (polar) bond. When 2(rBCP) < 0 

there is a depletion of electronic charge in the internuclear region. Using the AIM 

2000 software package, the electron density was integrated over atomic basins 

according to the quantum theory of atoms in molecules using PROAIM, and thus the 

BCP data and the molecular graphs were obtained. 
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Chapter 3 
Enhanced Intersystem Crossing in Core-Twisted 
Aromatics 
 

Abstract 

We describe the design, bottom-up synthesis and X-ray single crystal structure of 

systematically twisted aromatics 1c and 2d for efficient intersystem crossing. Steric 

congestion at the cove region creates nonplanar geometry that induces significant 

yield of triplet excited state in the electron poor polyaromatic hydrocarbons 1c and 

2d. A systematic increase in the number of twisted regions in 1c and 2d exhibits a 

concomitant enhancement in the rate and yield of intersystem crossing, as monitored 

using femtosecond and nanosecond transient absorption spectroscopy. Twist-

induced spin-orbit coupling via activated out-of-plane C-H/C=C vibrations can 

facilitate the formation of triplet excited state in twisted aromatics 1c and 2d, in 

contrast to negligible intersystem crossing in planar analog 3c. The ease of synthesis, 

high solubility, access to triplet excited state and strong electron affinity make such 

imide functionalized core-twisted aromatics as a desirable material for organic 

electronics. 
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3.1. Introduction 

 Carbon based contorted nanostructures[111] are emerging as vital components 

for optoelectronic devices[112], drug-delivery[113], catalysis[114] and sensors[115]. 

Planar nanostructures of carbon continue to attract immense interest for diverse 

applications[116]. Albeit low singlet-triplet energy gap, weak spin-orbit coupling 

(SOC) diminishes intersystem crossing (ISC) in graphene[117]. Enhancement of SOC 

in graphene was achieved by dilute hydrogenation[118], fluorination[119], or 

proximity with WS2[120]. Graphene grown on Cu, gold intercalated graphene grown 

on Ni[121] and Pb intercalated graphene grown on Ir[122] show strong SOC (ca. 20-

100 meV). Heavy adatoms (with partially filled p orbitals) deposited on the 

graphene lattice, also induce large intrinsic SOC[123]. Hydrogenation of graphene 

generates non-planar sp3 sites that are responsible for the induced SOC whereas 

other adatoms exhibit heavy atom effect in promoting the ISC in graphenoid 

structures. Interestingly, curvature dependent excited state properties such as ISC 

were observed in fullerene derivatives[124]. State-of-the-art theoretical and 

experimental investigations validate the importance of twist/nonplanarity in 

enhancing the SOC in graphenoid structures[125-126]. Systematic incorporation of 

twist in heavy atom free[127] sp2 hybridized graphenoid structure[128] (Scheme 3.1) 

to activate ISC has received less attention[117, 129].  

 Our on-going interest with core-twisted[82] organic chromophores[78, 81] 

prompted us to study the role of twist in the triplet formation. Recent efforts from
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Scheme 3.1. Molecular Structure of non-planar chromophores studied for efficient ISC 

along with the carbon allotropes graphene and fullerene C60; Efficiency and the rate of ISC are 

mentioned in the scheme. 

our group on heavy atom substituted core-twisted perylenediimide showed 

enhancement in triplet generation[82]. To isolate the influence of twist from heavy 

atom effect, it is imperative to impart heavy atom free twist in the chromophoric 

structure. Bottom-up approach to synthesize contorted aromatics[130-134], that 

include hexabenzocoronene[135], hexabenzoovalene[136], 

dibenzotetrathienocoronene[137], octabenzocircumbiphenyl[138], dimeric[77] and 

oligomeric perylenediimide[139] is still an emerging area. Hydrogen-hydrogen 

repulsion induced steric congestion at the cove region of extended perylenediimide 

chromophore offered core-twisted nanographenes 1c and 2d (Scheme 3.2) having π 
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Scheme 3.2. Molecular Structure the core-twisted derivative 1c and 2d along with the model 

derivative 3c; arrows indicate cove and bay regions in the derivatives. 

extension length of 1.1-1.6 nm. Presence of imide in the nonplanar derivatives 1c and 

2d improves i) electron affinity[140], ii) access to precisely functionalized edges[141] 

and ii) chemical/thermal/photochemical stability[142]. We herein report the first 

systematic investigation on “twist-only” induced intersystem crossing (kISC = 1x109 s-1 

for 1c and kISC = 4x1010 s-1 for 2d) in imide functionalized core-twisted aromatics[143]. 

Time-resolved absorption spectroscopic measurements display enhanced triplet 

quantum yield (T = 101% for 1c and T = 302% for 2d) in twisted aromatics when 

compared to negligible T (<1%) in the planar analog 3c. 

3.2. Synthesis, characterisation and crystal structure of twisted aromatics 

Synthesis: Compounds 1c and 2d were synthesized by Suzuki coupling of one and 

two phenanthrene units respectively with perylenediimide (PDI) followed by the 

metal catalyzed Scholl dehydrogenation reaction (Scheme 3.3). Bromination and 
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imidisation of 1 were performed by following the procedure reported elsewhere[19].  

1a and 2a were treated with one and two equivalents of 9-phenanthreneboronic acid 

to yield 1b and 2b respectively. Upon irradiation with sunlight in the absence and 

presence of iodine resulted in low yield of cyclized products (<1%). Upon exposure 

to 450 Watt Xenon lamp for 30 seconds at 40 °C, dilute solution (ca. 1 M) of 1b and 

2b in toluene offered 1c and 2c respectively. At higher reactant concentration (1b and 

2b), 450 Watt Xenon lamp light induced cyclization was not efficient even at elevated 

temperature (40-80°C). Further, 1b and 2b were subjected to Scholl reaction with 

FeCl3 in dry DCM/CH3NO2 solution under nitrogen flow. Between 0-30 °C, cyclized 

products from 1b and 2b were formed in low yield (<1%). At higher temperature (40 

°C), desired products 1c and 2d were obtained in 50% and 40% yield respectively 

under continuous nitrogen flow. Intermediate 2c (5% yield) was also isolated during 

the reaction and characterized by spectroscopic methods (Scheme 3.3). Model planar 

derivative 3c was synthesized via Suzuki coupling of two benzene units with 1,7-

dibromo PDI (2a) followed by Scholl dehydrogenation reaction. Red fluorescent 

singe crystals of 1c and 2d were obtained from chloroform and toluene solution 

respectively.   

Crystal Structure: Compound 1c crystallized in tetragonal space group P-43 

containing 4 molecules per unit cell (Table 3.1). Repulsion between H1’, H8’ atoms of 

phenanthrene unit and H2, H11 atoms of PDI unit, at the cove region (Figure 3.1) 

twist the chromophore 1c. The splay angles at the two cove regions of the compound  
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(i) Br2/I2, H2SO4, 85°C; (ii) 2,6-diisopropylaniline, imidazole, 130°C; (iii) 9-phenanthracenylboronic 
acid,  Pd(PPh3)4,  K2CO3, THF, H2O; (iv) FeCl3, CH3NO2,  dichloromethane, 40°C; (v) phenylboronic 
acid, Pd(PPh3)4,  K2CO3, THF, H2O. 
 
Scheme 3.3. Synthesis of the core-twisted derivatives 1c, 2d and the model derivative 3c.  

(i) (ii) 

(iii) (iv) 

(iii) (iv) (v) 

(v) (iv) 
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Table 3.1. Single crystal analysis parameter of the derivatives 1c and 2d. 

 1c 2d 

formula C62 H48 N2 O4 C76 H54 N2 O4 

formula wt 885.0555 1059.2530 

colour, shape Red, block Red, Block 

crystal system Tetragonal Triclinic 

space group, P-43 P-1 

a, Å 13.9364(2) 11.4627(5) 

b, Å 13.9364(2) 11.8704(5) 

c, Å 34.5285(7) 15.6450(6) 

α, deg 90 76.067(2) 

β, deg 90 89.834(2) 

γ, deg 90 72.770(10) 

V, Å3 6706.2(2) 1968.03(14) 

temp, K 296 296 

dcalcd, g/cm-3 1.348 1.205 

no. of reflections collected 11487 7652 

no. of unique reflections 9920 3794 

2�max, deg 50 50 

no. of parameters 803 472 

R1,  wR2  (I > 2�(I)) 0.1013, 0.0730 0.1469, 0.0694 

R1, wR2 (all data) 0.2326, 0.2046 0.2099, 0.1717 

goodness of fit 1.022 1.025 

CCDC number  1402604 1402605 

 

1c are found to be 44.3° and 40.7° (Figure 3.1A and B). Compound 2d possessing 

waggling conformation crystallizes in triclinic space group P-1, having one molecule 

per unit cell (Table 3.1). Repulsion between H1’, H8’ atoms of phenanthrene units  
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Figure 3.1. A) and C) crystal structure of the core-twisted derivatives 1c and 2d; B) and D) 

corresponding side view. 

and the pery region hydrogen atoms (H2, H5, H8 and H11) of PDI (Figure 3.1) at the 

4 cove regions twist the chromophore 2d with splay angle of 44.2° and 41.3° (Figure 

3.1C and D). To evaluate the thermodynamic stability between the helical 

vs.waggling conformation of the derivative 2d (Figure 3.2), we conducted density 

functional theory (DFT) calculations at the B3LYP/6-311G++(d, p) level. From the  

 

Figure 3.2. Energy optimized twisted and waggling conformation of the derivative 2d along 

with the corresponding crystal structure. 
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 DFT calculations, it is estimated that the waggling conformer of 2d is 

thermodynamically more stable than the helical conformer by 17.5 kcal mol-1 (Figure 

3.2). Single crystal X-ray structure analysis of 1c and 2d revealed a contorted 

polycyclic skeleton having 9 and 13 aromatic rings respectively. 

3.3. Results and discussions 

3.3.1. Electrochemical studies 

Cyclic voltammogram (0.1 M, nBu4NPF6 in DCM) exhibited reversible 

reduction peaks (Figure 3.3A) at -0.69 and -0.92 V for 1c; -0.77 and -1.01 V for 2d. The 

reduction potential of the derivatives 1c and 2d are more negative than those of the 

model derivative 3c (-0.55 and -0.79 V), indicating that the 1c and 2d derivatives are 

significantly weaker electron acceptors. Highest occupied molecular orbital (HOMO) 

distribute over the whole π system of the derivatives 1c, 2d and the model derivative 

3c (Figure 3.3B). In contrast, lowest unoccupied molecular orbital (LUMO) spreads 

only at the coronenediimide core, due to the presence of electron withdrawing imide 

group. 

3.3.2. Photophysical characterisation in solution state 

By virtue of the twisted nature, derivatives 1c and 2d with large π–surface 

dissolve well in common organic solvents like chloroform, dichloromethane and 

toluene. UV-Visible absorption spectrum (Figure 3.4A) of 1c in toluene shows peaks 

centered at 475, 505 and 545 nm corresponding to π→π*(HOMO→LUMO) transition 

(Figure 3.4A). Derivative 2d in toluene exhibits π→π* transition at i) 582 and 539 nm  
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Figure 3.3. A) Cyclic voltammogram analysis of the derivatives (1 mM) 1c, 2d and 3c in 

dichloromethane in the presence of tetrabutylhexafluoroammoniumphosphate (100 mM) with 

respect to Ag/Ag+ electrode; B) FMO analysis obtained from the TD-DFT calculations. 

corresponding to S0→S1 (HOMO→LUMO); ii) 475, 445 and 416 nm due to S0→S2 

(HOMO-1→LUMO); iii) 385 nm corresponding to S0→Sn (HOMO→LUMO+1), in 

agreement with the DFT calculations (Figure 3.4A). Model derivative 3c exhibits 

peak centered at 460 and 490 nm corresponding to π→π*(HOMO→LUMO) 

transition as reported earlier[144]. Upon excitation at 480 nm, 1c shows vibronically 

resolved emission (Figure 3.4B) centered at 555, 597 and 652 nm with the 

fluorescence quantum yield (F) of 70±2%. Temperature dependent emission 

(ex=480 nm) and excitation (em=600 nm) spectra of 1b in toluene indicated the 

evolution of a new species having emission features identical to that of 1c  (Figure 

3.5A). Spectroscopic analysis confirms the photocyclization of 1b in toluene (ca. 1 

M) at higher temperature to yield 1c. When compared to 1c, derivative 2d exhibits 

red-shifted emission centered at 586, 635 and 696 nm with F of 40±2%. Model 

derivative 3c show vibronically resolved emission centered at 510, 550 and 580 nm 
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Figure 3.4. A) absorption; B) emission spectra (ex= 480 nm); C) time dependent emission 

spectra (ex= 480 nm and monitored at their emission maxima) of the derivatives 1c, 2d and 

3c in toluene. 

with F of 85±2% (Figure 3.4B). Partial reduction in the F of 1c and 2d when 

compared 3c could be attributed to the non-radiative decay pathways arising from 

nonplanar nature of the chromophores 1c and 2d[125]. Upon excitation at 480 nm, 

derivative 1c and 2d in toluene exhibit fluorescence lifetime (Figure 3.4C) of 10 and 

5.4 ns respectively. Model derivative 3c in toluene shows monoexponential 

fluorescence lifetime of 5.5 ns upon excitation with 480 nm. 

 

Figure 3.5. Temperature dependent A) emission (ex= 480 nm) and B) excitation spectra 

(em= 600 nm) of the derivative 1b in toluene.  
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3.3.3. Transient absorption measurements 

3.3.3.1. Nanosecond transient absorption measurements 

 Further insights into the excited state deactivation in core-twisted derivatives 

came from nanosecond and femtosecond transient absorption measurements. Upon 

excitation at 355 nm, 10 ns laser pulse, 1c in toluene (Figure 3.6A) exhibited the 

negative absorption peaks centered at 380, 470 and 510 nm corresponding to ground 

state depletion (S0→Sn). Observed twin absorption centered at 400 and 580 nm with 

the single exponential decay lifetime of 3.7 s (Figure 3.6B) is attributed to triplet 

excited state in 1c. Compound 2d in toluene (Figure 3.6C) showed ground state  

 

Figure 3.6. A) and C) nTA spectra of the core-twisted derivatives 1c and 2d respectively; B) 

and D) kinetics profile of the transient species (triplet decay and bleach recovery) in the 

derivatives 1c and 2d respectively in toluene upon excitation with 355 nm, 10 ns laser pulse. 
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depletion at 390, 480 and 590 nm, consistent with the UV-Vis absorption spectrum. 

Transient absorption corresponding to triplet excited state is observed at 340, 420, 

560 and 610 nm with the lifetime of 19.6 s (Figure 3.6D). The existence of triplet 

excited state in 1c and 2d were further confirmed by the quenching of the transient 

spectra by oxygen purging.  

In contrast, planar derivative 3c in toluene exhibited negligible transient 

absorption upon excitation at 355 nm.  Triplet quantum yield (T) of 1c and 2d were 

calculated to be 10±1% and 30±2% respectively employing triplet-triplet energy 

transfer method[82]. Significant enhancement in the T of 1c and 2d when compared 

to the model derivative 3c is attributed to the twist induced SOC as reported 

earlier[129]. However, ISC was reported by Flamigni and coworkers 

inunsymmetrically subtituted planar perylene derivatives which could be attributed 

to the nπ* to ππ* transition arising from the bay imidisation[57, 145]. 

3.3.3.2. Femtosecond transient absorption measurements 

To unravel the kinetics of intersystem crossing, core-twisted derivatives 1c 

and 2d in toluene were excited with 110 fs, 300 nm laser pulse. Femtosecond 

transient absorption (fTA) spectra of 1c and 2d showed a sharp negative absorption 

at 600 nm, corresponding to the second harmonic of the pump laser (2ex = 600 nm). 

Photoexcitation of 1c at 300 nm displayed (Figure 3.7A) negative absorption at 505 

and 545 nm along with the positive absorption peaks centered at 510, 550, 630, 680 

and 720 nm. Negative absorption observed at 505 and 545 nm could be attributed to 
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ground state depletion consistent with UV-Vis absorption spectrum. Singular value 

decomposition (SVD) of ΔA versus time and the wavelength based three-

dimensional map of 1c followed by global analysis yielded three principle 

components. Negative absorption centered at 560 nm with the lifetime of 9.5 ns is 

ascribed to stimulated emission. Positive absorption centered at 720 nm corresponds 

to S1Sn transitions that decay with a lifetime of 70 ps (kIC = 0.14x1011 s-1)  (Figure 

3.7B). The rise time of emerging positive absorption peak at 630 nm is estimated to 

be 1 ns (kISC = 1x109 s-1)  and is ascribed to T1Tn transition (Figure 3.7B). Upon  

 

Figure 3.7. A) and C) fTA spectra of the core-twisted derivatives 1c and 2d respectively; B) 

and D) kinetics profile of the transient species (triplet and singlet decay) in the derivatives 1c 

and 2d respectively in toluene upon excitation with 300 nm, 110 fs laser pulse. 
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excitation at 300 nm, 2d in toluene (Figure 3.7C) showed ground state depletion at  

475, 532 and 585 nm, consistent with the ground state absorption spectrum. SVD 

followed by global analyses of the positive absorption bands centered at 455, 516, 

552 and 610-800 nm consist of three principal components. Negative absorption 

centered at 600 nm, with the lifetime of 5.1 ns is attributed to stimulated emission. 

The right singular vector at 720 nm decays with a lifetime of 6.5 ps (kIC = 1.54x1011 s-1) 

that corresponds to S1Sn transition (Figure 3.7C). During the decay centered at 720 

nm, concomitant appearance of a new band at 630 nm is observed (Figure 3.7D). 

Emerging band at 630 nm with a rise time (ISC) of 25 ps (kISC = 4x1010 s-1) is attributed 

to T1Tn transition in the derivative 2d. According to the rates of internal conversion 

(kIC) and intersystem crossing (kISC), the efficiency of ISC (φ୍ୗେ = 	 ୍݇ୗେ ୍݇େ⁄ ) is 

calculated to be 7.1% and 26% for 1c and 2d respectively which is in agreement with 

the T calculated from the triplet-triplet energy transfer method. Quantum chemical 

calculations (Figure 3.8) indicate that out of plane C=C and C-H vibrations (np) can 

allow efficient ISC from a ππ* type singlet to ππ* type triplet driven by Herzberg–

Teller vibronic coupling[146]. 

3.4. Conclusions 

 In conclusion, we report the design and synthesis of solution processable 

electron deficient core-twisted aromatics 1c and 2d. Femtosecond and nanosecond 

transient absorption measurements revealed “twist-only” induced ultrafast ISC in 

the non-planar derivatives 1c and 2d. Enhanced out of plane C=C and C-H  
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Figure 3.8. A), B) and C) out-of-plane mode C-H vibration; D), E) and F)  out-of-plane mode 

C=C vibration in the derivatives 1c, 2d and 3c respectively (obtained from DFT calculation, 

Gaussian 09). 

vibrations facilitate efficient ISC with T of 10±1% and 30±2% in the derivatives 1c 

and 2d respectively, driven by Herzberg–Teller vibronic coupling. Higher kISC of 

4x1010 s-1 for doubly twisted 2d when compared to kISC of 1x109 s-1 for singly twisted 1c 

clearly establishes the role of nonplanarity in facilitating ISC. Ease of solution 

processability and activated triplet excited state in the twisted aromatics 1c and 2d 

are beneficial for photovoltaic device applications. Current efforts in our laboratory 

are directed towards developing twisted chromophores for high performance opto-

electronic devices. 
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3.5. Experimental section 

3.5.1. Synthesis and characterisation 

3.5.1.1. Synthesis of 1a and 2a 

7.5 g of PTCDA (1) was stirred with 80 mL of concentrated sulphuric acid for 

4 hours. 500 mg of elemental iodine was added and the reaction mixture was heated 

to 85°C. 1or 2 equivalents of elemental bromine was added drop wise to synthesise 1-

bromo and 1,7-dibromo (PTCDA-Br(1-2)) respectively. The reaction mixture was 

refluxed for 24 hours. After 24 hours, the product was precipitated by pouring the 

reaction mixture into 200 mL of ice water. The product (PTCDA-Br1-2) was filtered 

and dried in hot air oven. Since, the product was insoluble in any solvent, subjected 

to imidisation reaction without further purification. 1 g PTCDA-Br(1-2) of were mixed 

with 4 g of imidazole and 3 equivalents of 2,6-diisopropylaniline under nitrogen 

atmosphere. Reaction mixture was refluxed at 140 °C for 12 hours. After completion 

of the reaction, reaction mixture is poured into the solution of 60 % ethanol and 40 % 

1N HCl. Red coloured precipitate was filtered and dried in hot air oven. 1a and 2a 

were purified by silica column chromatographic technique using 

dichloromethane/petroleum ether mixture (50:50) as the eluent.  

1a (yield = 30 %). M.p. > 300 °C. 1H NMR [500 MHz, CDCl3, δ]:  9.69 (d, J= 8.00 Hz, 

1H), 8.81 (s, 1H), 8.60 (m, 3H), 8.48 (d, J= 8.00 Hz, 2H), 7.50 (m, 2H), 7.33 (m, 4H), 2.72 

(m, 2H), 2.56 (m, 2H) 1.12 (m, 6H), 1.10 (m, 6H), 1.06 (m, 6H), 1.05 (m, 6H). 13C NMR 

[125 MHz, CDCl3, δ]:170.4, 159.6, 140.4, 135.7, 133.0, 131.8, 131.2, 131.0, 129.4, 128.7, 

127.3, 126.8, 124.7, 124.0, 60.8, 39.4, 26.4, 20.8. IR (KBr, cm-1):  1735, 1693 and 1653. 

Elemental analysis: calcd. value for C48H41BrN2O4: 61.00% C, 3.76% H and 4.18% N; 

found: 61.15% C, 3.68% H and 4.14% N. HRMS (EI) m/z calculated for C48H41BrN2O4 

[M]+: 669.4749, found: 669.4735. 

2a (yield = 70 %). M.p. > 300 °C. 1H NMR [500 MHz, CDCl3, δ]:  9.41 (d, J= 8.20 Hz, 

2H), 8.84 (s, 2H), 8.62 (d, J= 8.20 Hz, 2H), 7.52 (m, 2H), 7.35 (m, 4H), 2.60 (m, 4H), 1.06 
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(m, 24H). 13C NMR [125 MHz, CDCl3, δ]: 171.09, 162.40, 138.11, 133.16, 132.98, 130.16, 

129.31, 128.61, 126.98, 123.04, 122.62, 120.90, 62.20, 37.86, 27.34, 20.95. IR (KBr, cm-1):  

1733, 1698 and 1670. Elemental analysis: calcd. value for C48H40Br2N2O4: 54.57% C, 

3.23% H and 3.74% N; found: 54.68% C, 3.29% H and 3.61% N. HRMS (EI) m/z 

calculated for C48H40Br2N2O4 [M]+: 748.3710, found: 748.3704. 

3.5.1.2. Synthesis of 1b 

0.2 mmol of 1-bromoperylenediimide (1a) was dissolved in dry THF and 10 

mL of 2 M potassium carbonate was added. Reaction mixture was purged with 

nitrogen for 15 minutes. 0.02 mmol of tetrakis(triphenylphosphine)palladium(0) and 

0.25 mmol of 9-phenanthreneboronic acid were added under nitrogen atmosphere. 

Reaction mixture was refluxed at 65 °C under nitrogen atmosphere. After 

completion of the reaction, product was extracted in dichloromethane and purified 

by column chromatography using dichloromethane/petroleum ether mixture (60:40) 

as eluent. Red coloured solid was obtained as product (1b) in 50 % yield. M.p. > 300 

oC. 1H NMR [500 MHz, CDCl3, δ]:  8.82 (m, 4H), 8.73 (s, 2H), 8.66 (s, 1H), 8.02 (d, 1H), 

7.85 (m, 3H), 7.66 (m, 4H), 7.40 (m, 3H), 7.28 (t, 2H), 7.19 (d, 2H), 2.73 (m, 2H), 2.56 

(m, 2H), 1.15 (m, 6H), 1.13 (m, 6H), 1.06 (m, 6H), 1.05 (m, 6H).13C NMR [125 MHz, 

CDCl3, δ]: 163.67, 163.56, 163.29, 163.23, 145.71, 145.62, 145.50, 139.98, 139.12, 137.53, 

135.57, 135.06, 134.96, 134.27, 131.83, 131.71, 131.62, 131.49, 131.44, 130.50, 130.47, 

130.39, 129.75, 129.69, 129.07, 128.97, 128.22, 127.76, 127.71, 127.58, 127.55, 127.41, 

127.13, 126.56, 125.55, 124.16, 124.07, 123.83, 123.40, 123.34, 123.05, 122.98, 122.48, 

122.41, 31.94, 29.71, 29.27, 29.24, 29.13, 29.11, 24.07, 24.00, 23.97, 23.92, 23.91, 22.71. IR 

(KBr, cm-1):  2960, 1705, 1668, 1591, 1497, 1458, 1339 and 1250. Elemental analysis: 

calcd. value for C62H50N2O4: 83.95% C, 5.68% H and 3.16% N; found: 84.05% C, 5.50% 

H and 3.15% N. HRMS (EI) m/z calculated for C62H50N2O4 [M]+: 886.3771, found: 

886.3762. 
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3.5.1.3. Synthesis of 1c 

100 mg of 1b was dissolved in 500 mL of dry dichloromethane and heated to 

40 °C under nitrogen atmosphere. A solution of 8 equivalents ferric chloride in 10 

mL dry nitromethane was added dropwise into the reaction mixture under 

continuous nitrogen purging. The reaction mixture was refluxed at 40 °C for 1 hour. 

Reaction temperature was limited by the boiling point of dichloromethane. 

Completion of the reaction is monitored through thin layer chromatographic (TLC) 

technique. Then methanol was poured into the reaction mixture to stop the reaction. 

Reddish orange coloured product was precipitated. 1c was purified by silica column 

chromatographic technique using dichloromethane/petroleum ether (60:40) mixture 

as eluent. Yield obtained was 50 %. Compound 1c crystals were obtained from the 

slow evaporation of chloroform solution. M.p. > 300 oC. 1H NMR [500 MHz, CDCl3, 

δ]:  10.30 (s, 2H), 9.41 (d, 2H), 9.15 (d, 2H), 8.77 (d, 2H), 8.64 (d, 2H), 7.78 (m, 4H), 7.46 

(t, 2H), 7.32 (d, 4H), 2.83 (m, 4H), 1.16 (m, 24H). 13C NMR [125 MHz, CDCl3, δ]: 

164.20, 164.15, 145.77, 134.95, 134.11, 131.70, 131.03, 130.82, 129.83, 129.68, 128.75, 

128.54, 128.47, 128.07, 127.64, 126.68, 124.93, 124.74, 124.15, 123.43, 122.46, 122.00, 

53.41, 29.70, 29.32, 24.09, 24.05. IR (KBr, cm-1):  2960, 1709, 1670, 1595, 1458, 1327 and 

1248. Elemental analysis: calcd. value for C62H48N2O4: 84.14% C, 5.47% H and 3.17% 

N; found: 84.28% C, 5.39% H and 3.21% N. HRMS (EI) m/z calculated for C62H48N2O4 

[M]+: 884.3614, found: 884.3604. 

3.5.1.4. Synthesis of 2b 

0.2 mmol of 1,7-dibromoperylenediimide (2a) was dissolved in dry THF and 

10 mL of 2 M potassium carbonate was added. Reaction mixture was purged with 

nitrogen for 15 minutes. 0.02 mmol of tetrakis(triphenylphosphine)palladium(0) and 

0.50 mmol of 9-phenanthreneboronic acid were added under nitrogen atmosphere. 

Reaction mixture was refluxed at 65 °C under nitrogen atmosphere. After 

completion of the reaction, product was extracted in dichloromethane and purified 
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by column chromatography using dichloromethane/petroleum ether mixture (65:35) 

as eluent. Red coloured solid was obtained as product (2b) in 45 % yield. M.p. > 300 

oC. 1H NMR [500 MHz, CDCl3, δ]:  8.84 (m, 2H), 8.78 (m, 2H), 8.68 (d, 2H), 8.15 (d, 

1H), 8.01 (d, 1H), 7.94 (m, 3H), 7.88 (m, 2H), 7.81 (m, 3H), 7.73 (m, 4H), 7.63 (m, 2H), 

7.54 (t, 1H), 7.46 (t, 1H), 7.36 (t, 2H), 7.20 (m, 4H), 2.62 (m, 4H), 1.04 (m, 24H).13C 

NMR [125 MHz, CDCl3, δ]: 163.69, 163.66, 163.39, 163.33, 145.63, 145.60, 145.50, 

139.98, 139.12, 137.53, 135.57, 135.06, 134.96, 134.27, 131.83, 131.71, 131.62, 131.49, 

131.44, 130.50, 130.47, 130.39, 129.75, 129.69, 129.07, 128.97, 128.22, 127.76, 127.71, 

127.58, 127.55, 127.41, 127.13, 126.56, 125.55, 124.16, 124.07, 123.83, 123.40, 123.34, 

123.05, 122.98, 122.48, 122.41, 31.94, 29.71, 29.27, 29.24, 29.13, 29.11, 24.07, 24.00, 23.97, 

23.92, 23.91, 22.71 (KBr, cm-1):  2960, 1732, 1694 and 1657. Elemental analysis: calcd. 

value for C76H58N2O4: 85.85% C, 5.50% H and 2.63% N; found: 85.88% C, 5.40% H and 

2.65% N. HRMS (EI) m/z calculated for C76H58N2O4 [M]+: 1062.4397, found: 1062.4367. 

3.5.1.5. Synthesis of 2d 

100 mg of 2b was dissolved in 500 mL of dry dichloromethane and heated to 

40 °C under nitrogen atmosphere. A solution of 8 equivalents ferric chloride in 10 

mL dry nitromethane was added dropwise into the reaction mixture under 

continuous nitrogen purging. The reaction mixture was refluxed at 40 °C for 1 hour. 

Aliquot of the reaction mixture was poured into methanol to stop the reaction. Red 

coloured precipitate was filtered and dried in hot air oven. One side cyclised product 

2c was purified by column chromatographic technique using 

dichloromethane/petroleum ether (65:35) and characterised by 1H NMR 

spectroscopy. M.p. > 300 oC. 1H NMR [500 MHz, CDCl3, δ]:  10.82 (s, 2H), 8.99 (m, 

2H), 8.93 (m, 2H), 7.90 (m, 4H), 7.63 (m, 3H), 7.49 (m, 4H), 7.38 (m, 3H), 7.22 (m, 4H), 

7.20 (m, 2H), 7.12 (m, 2H), 3.64 (m, 2H), 2.97 (m, 2H), 1.24 (m, 24H). IR (KBr, cm-1):  

1748, 1709 and 1665. HRMS (EI) m/z calculated for C76H56N2O4 [M]+: 1060.4240, 

found: 1060.4167. Since, very little material was isolated, further studies were not 

performed on this molecule. We focused to synthesise both side cyclised poly 
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aromatic imides. Rest of the reaction mixture was refluxed under nitrogen 

atmosphere for 4 more hours. Then the reaction mixture was poured into methanol 

and red coloured precipitate was filtered and dried. Product 2d was purified by 

silica column chromatographic technique using dichloromethane/petroleum ether 

(65:35) mixture as eluent. Yield obtained was 40 %. 2d crystals were obtained from 

the slow evaporation of toluene solution. M.p. > 300 oC. 1H NMR [500 MHz, CDCl3, 

δ]:  10.86 (s, 4H), 8.99 (m, 4H), 8.89 (m, 4H), 7.86 (m, 8H), 7.50 (t, 2H), 7.37 (d, 4H), 

2.98 (m, 4H), 1.21 (d, 24H). 13C NMR [125 MHz, CDCl3, δ]: 164.95, 145.87, 131.81, 

131.69, 130.77, 129.67, 128.97, 128.43, 128.35, 128.16, 126.88, 124.26, 124.18, 121.25, 

29.41, 24.15. IR (KBr, cm-1):  1738, 1701 and 1662. Elemental analysis: calcd. value for 

C76H54N2O4: 86.18% C, 5.14% H and 2.64% N; found: 86.08% C, 5.12% H and 2.50% N. 

HRMS (EI) m/z calculated for C76H54N2O4 [M]+: 1058.4084, found: 1058.4067. 

3.5.1.6. Synthesis of 3b 

0.2 mmol of 1,7-dibromoperylenediimide (2a) was dissolved in dry THF and 

10 mL of 2 M potassium carbonate was added. Reaction mixture was purged with 

nitrogen for 15 minutes. 0.02 mmol of tetrakis(triphenylphosphine)palladium(0) and 

0.50 mmol of phenylboronic acid were added under nitrogen atmosphere. Reaction 

mixture was refluxed at 65 °C under nitrogen atmosphere. After completion of the 

reaction, product was extracted in dichloromethane and purified by column 

chromatography using dichloromethane/petroleum ether mixture (65:35) as eluent. 

Red coloured solid was obtained as product (3b) in 45 % yield. M.p. > 300 oC. 1H 

NMR [500 MHz, CDCl3, δ]: 8.66 (s, 2H), 8.15 (d, 2H), 7.87 (d, 2H), 7.57 (m, 4H), 7.46 

(m, 8H), 7.27 (d, 4H), 2.84 (m, 4H), 1.12 (d, 24H). 13C NMR [125 MHz, CDCl3, δ]: 

163.10, 162.50, 144.64, 141.12, 140.44, 134.83, 134.37, 132.01, 129.46, 129.30, 128.99, 

128.63, 128.07, 127.79, 127.43, 123.09, 121.34, 120.96, 28.17, 23.04, 22.97. IR (KBr, cm-1):  

2960, 1732, 1694 and 1657. Elemental analysis: calcd. value for C60H50N2O4: 83.50% C, 

5.84% H and 3.25% N; found: 83.62% C, 5.60% H and 3.35% N. HRMS (EI) m/z 

calculated for C60H50N2O4 [M]+: 862.3771, found: 862.3777. 
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3.5.1.7. Synthesis of 3c 

100 mg of 3b was dissolved in 500 mL of dry dichloromethane and heated to 

40 °C under nitrogen atmosphere. A solution of 8 equivalents ferric chloride in 10 

mL dry nitromethane was added dropwise into the reaction mixture under 

continuous nitrogen purging. The reaction mixture was refluxed at 40 °C for 1 hour. 

Reaction temperature was limited by the boiling point of dichloromethane. 

Completion of the reaction is monitored through thin layer chromatographic (TLC) 

technique. Then methanol was poured into the reaction mixture to stop the reaction. 

Orange coloured product was precipitated. 3c was purified by silica column 

chromatographic technique using dichloromethane/petroleum ether (60:40) mixture 

as eluent. Yield obtained was 50 %. M.p. > 300 oC. 1H NMR [500 MHz, CDCl3, δ]:  

10.68 (s, 4H), 9.56 (m, 4H), 8.17 (m, 4H), 7.53 (t, 2H), 7.40 (d, 4H), 2.94 (m, 4H), 1.15 

(d, 24H). 13C NMR [125 MHz, CDCl3, δ]: 164.20, 146.47, 131.70, 130.12, 129.83, 129.75, 

129.37, 125.30, 125.20, 124.90, 124.82, 124.40, 124.06, 122.65, 29.75, 24.19. IR (KBr, cm-

1):  2950, 1715, 1680, 1596 and 1458. Elemental analysis: calcd. value for C60H46N2O4: 

83.89% C, 5.40% H and 3.25% N; found: 83.98% C, 5.29% H and 3.21% N. HRMS (EI) 

m/z calculated for C62H48N2O4 [M]+: 858.3458, found: 858.3444. 

3.6. Appendix 

3.6.1. Materials and methods 

As discussed in the Chapter 2. 

Spectral measurements: As discussed in the Chapter 2. 

Transient absorption measurements: As discussed in the Chapter 2. 

 Efficiency of intersystem crossing (ISC) could be estimated from the rates of 

internal conversion (kIC) and intersystem crossing (kISC)  as follows,[77]  
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                                    ߮ூௌ = 	
ଵ

ఛೄ
ଵ
ఛ

൙                                                      ---(3.1) 

Where, ISC – rate of intersystem crossing and IC – rate of internal conversion; 

extracted from the fTA spectra analysis. 

X-ray crystallography: As discussed in the Chapter 2.  

Computational methods: Ground-state optimised structure and harmonic oscillator 

frequencies were computed using density functional theory (DFT) at the Beake’s 

three parameter functional in combination with the Lee-Yang-Parr correlation 

functional (B3LYP) and 6-311+G(d,p) basis set. Vertical excitation energies and 

oscillator strengths were calculated employing time dependent DFT (TD-DFT) at the 

B3LYP/6-311G++(d,p) level of theory. All computations were performed with the 

Gaussian 09 program suite[110]. 
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Chapter 4 
Charge-Transfer Facilitated Triplet Generation in 
Perylenediimide based Orthogonal Dyads and Triads 

 

Abstract 

Near-orthogonal donor-acceptor (D-A) dyads and triads (D-A-D) containing 

anthracene (AN) / pyrene (PY, electron donor) and perylenediimide (PDI, electron 

acceptor) show a low-energy CT absorption band. Lippert-Mataga analysis 

established the CT character of the emitting singlet states in dyad and triads 

employing the solvatochromic shift in the position of the fluorescence spectra. 

Futhermore, the Rehm–Weller relation based exploration of the thermodynamic 

feasibility of electron transfer, suggests a favourable change in free energy for the 

electron transfer from the singlet excited state of AN/PY to PDI unit (G = –1.1 eV for 

AN; G = –1.4 eV for PY). Upon excitation (ex = 355 nm), excited (high energy) 

charge transfer intermediate leads to solvent polarity dependent intersystem 

crossing to generate localised triplet (3A*) and/or triplet charge transfer 3(D•+-A•−)* 

state. Solvent dependent nTA spectra of the dyads and triads show that non-polar 

solvent like toluene facilitate the formation of 3A* while long lived triplet charge 

separated state 3(D•+-A•−)* is formed in polar solvents such as DMF. The present 

chapter offers the correlation between solvent polarity vs. excited state photophysical 

properties in near-orthogonal D-A dyads and D-A-D triads. 
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4.1. Introduction  

 Photoinduced electron transfer (PET) processes are widely studied in electron 

donor (D) – acceptor (A) systems to understand the factors that affect the rate and 

efficiency of charge transfer[147]. The research on PET primarily focuses on 

mimicking the natural photosynthetic systems where the photoexcitation is followed 

by sequential energy and electron transfer processes which lead to a long lived 

charge separated state with very high yield[148-149]. Reported literature 

encompasses a large extent of multichromophoric systems[150] including molecular 

dyad, triads[151-152], tetrads[153] and pentads[154-155] to mimic the multistep 

charge/electron transfer processes occurring in natural photosynthesis[156]. 

However, the lifetime of the charge separated states is not significantly increased 

due to the rapid geminate charge recombination. Mimicry of some other aspects of 

photosynthetic reaction centers has proven less facile. A particularly interesting 

aspect of primary photosynthesis is the back electron-transfer reaction that produces 

a triplet state of the initial bacteriochlorophyll or chlorophyll donors in green plant 

photosystem II reaction canters[157-158]. Long lived charge separation has been 

observed in artificial photosynthetic systems where the donor- acceptor system can 

access an excited state triplet character (D.+-A.-)*[159-160]. Charge recombination 

leading to the formation of the triplet state has been successfully realized in many 

donor–spacer-acceptor systems[161]. The formation of locally excited triplet state (D-

3A)* /( 3D-A)* and charge transfer triplet excited state (3(D•+-A•-)*) is explained by the 
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spin orbit coupling  ISC mechanism (SOC-ISC) and radical pair ISC mechanism (RP-

ISC) respectively (Scheme 4.1)[162]. 

 In principle the rate of charge recombination could be retarded if the ground 

and intermediate excited states of the system has different spin multiplicity. 

Recently, there has been greater interest in optically dark charge-transfer (CT) states 

that affect excited-state processes, in particular, spin-state interconversion. 

Investigation of this phenomenon in carbozole-tetrachlorophthalimide, D-A system, 

had shown that the singlet charge separated state (1(D+-A-)*) is short lived (ca. 20 ns) 

and triplet charge separated state (3(D+-A-)*) has a lifetime in the micro-millisecond  

 

Figure 4.1. An energy level diagram for the donor-acceptor (D-A) dyads illustrates the 

different photoinduced processes that occur in these molecules. The triplet state that is 

reached through RP-ISC can be localized on either the donor or the acceptor. 

range[163-164]. In the absence of a strong external magnetic field, the most 

reasonable mechanisms for intersystem crossing in general involve either spin-orbit 

coupling or hyperfine interactions[25]. Spin-orbit coupling is unlikely to induce the 
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alternate intersystem crossing process kIscCT. Lim has shown that in the one-electron 

approximation, spin-orbit coupling between the 1(A•−-D•+) and 3(A•−-D•+) states is 

zero, since the orbital occupation is the same in each system[165]. Thus, the 

hyperfine interaction is the most reasonable mechanism for the intersystem crossing 

from 1(A•−-D•+) to 3(A•−-D•+). Indeed, direct evidence for this mechanism has been 

obtained in some covalently linked donor/acceptor systems[166]. In some favorable 

cases, the triplet radical pair state has been directly observed, confirming the 

mechanism[167].  

 However, the weak hyperfine interactions can only induce intersystem crossing 

when the energy difference between the singlet and triplet CT states is small, i.e., 

when electronic coupling is weak[168]. In both bimolecular and covalently linked 

donor/acceptor CT systems, electronic coupling tends to decrease with increasing 

separation distance between the radical sites. In most of the covalently linked 

charge-transfer systems that have been studied, the distance between the donor and 

the acceptor is usually large, to reduce electronic coupling[168]. Orthogonal donor-

acceptor systems tend to show negligible orbital overlap due to the improper 

orientation between the constituent donor and acceptor units[169]. In the present 

work, we have designed some orthogonal D-A dyads and D-A-D triads for reduced 

electronic coupling and studied their ISC properties in the excited state.  

 The present work describes the synthesis, steady state and ultrafast (femto and 

nanosecond) photophysical properties of orthogonal dyads (AN-PDI and PY-PDI) 

and triads (AN-PDI-AN and PY-PDI-PY) (Scheme 4.1) along with the model  
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Scheme 4.1. Molecular structures of the PDI based D-A dyad and D-A-D triad. 

derivative PH-PDI and PH-PDI-PH which show extended delocalization between 

the units. Solvent dependent nTA spectra of the dyads and triads show that non-

polar solvent facilitate the formation of 3PDI while long lived triplet charge 

separated states are formed in polar solvents. Fully conjugated PH-PDI and PH-PDI 

PH exhibit neither CT nor 3PDI, but only nearly quantitative fluorescence is 

observed. The present chapter offers the correlation between solvent polarity vs. 

excited state photophysical properties in near-orthogonal donor-acceptor systems. 

4.2. Synthesis and characterisation 

 All the derivatives were synthesised by performing Suzuki coupling of bromo 

derivative of PDI with arylboronic acids in the presence of Pd0 catalyst as reported 

PH-PDI AN-PDI PY-PDI 

PY-PDI-PY AN-PDI-AN PH-PDI-PH 

Dyads 

Triads 



Chapter 4 – Charge Transfer Facilitated Intersystem Crossing in Perylenediimide based Orthogonal Dyads and Triads 
 

90 
 

earlier. Suzuki reaction of 1-bromo PDI (PDI-Br; synthesis is reported in chapter 2) 

with one equivalent of 1-phenyl, 9-anthracene and 1-pyrene boronic acids in the 

presence of tetrakis(triphenylphosphine)palladium(0) catalyst offered the dyads PH-

PDI, AN-PDI and PY-PDI respectively (Scheme 4.2). In the same way, reaction of 1, 

7-dibromo PDI (PDI-Br2; synthesis reported in chapter 2) with 2 equivalents of 1-

phenyl, 9-anthracene and 1-pyrene boronic acids offered the triads PH-PDI-PH, AN-

PDI-AN and PY-PDI-PY respectively (Scheme 4.2). All the derivatives have been 

purified by column chromatographic techniques and characterised by spectroscopic 

and analytical techniques. 

 

i) Phenylboronic acid; ii) anthracene-9-boronic acid; iii) pyrene-1-boronic acid and 
iv) Pd(PPh3)4, K2CO3, THF/H2O, 65°C 

Scheme 4.2. Syntheses scheme for the PDI based dyads and triads.  
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(iii) (iii) 
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4.3. Results and discussions 

4.3.1. Structure optimization 

 As the X-ray analyses of the compounds were unsuccessful; the molecular 

structures of the dyad and triad derivatives were geometry optimised calculated 

using DFT analysis (Scheme 4.3). All the derivatives were optimised at B3LYP/6-

311G (d,p) theory level. In PH-PDI and PH-PDI-PH, freely rotating phenyl groups at 

the bay region are at a dihedral angle of 50-55° to the PDI plane (Scheme 4.3). But in 

the case of AN and PY based derivatives (AN/PY-PDI; AN/PY-PDI-AN/PY), AN/PY 

units are near orthogonal with respect to the PDI plane with the dihedral angle of 75-

80°. Frontier molecular orbital (FMO) analysis shows that the phenyl substitution in 

the bay region extends the π surface of PDI while anthracene and pyrene based 

 

Scheme 4.3. Optimised geometries of the dyads and triads obtained using B3LYP/6-311G 

(d,p) level of theory; θ show the dihedral angle between the donor and acceptor units;  imide 

alkyl chain is omitted for the clarity. 
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derivatives show negligible orbital overlap between AN/PY and PDI units (Figure 

4.2B). Highest occupied and lowest unoccupied molecular orbitals (HOMO and 

LUMO) exhibit delocalised PDI π surface in phenyl derivatives. Conversely, in AN 

and PY based derivatives, HOMO is localised on AN/PY unit while LUMO is 

concentrated in PDI unit, establishing a donor-acceptor relation between AN/PY and 

PDI.  

4.3.2. Electrochemical analysis 

 Cyclic voltammogram of the dyads and triads along with model derivatives 

anthracene (AN), pyrene (PY) and perylenediimide (PDI) in dichloromethane are 

indicated in the table 4.1. Model donor molecules AN and PY show the oxidation  

Table 4.1. Electrochemical properties of the derivatives along with the model derivatives in 

dichloromethane; HOMO and LUMO energy levels obtained from DFT calculations. 

Molecule Ered1, eV Ered2, eV Eox, eV 
HOMO, 

eV 

LUMO, 

eV 

Anthracene - - 1.50   

Pyrene -2.51 - 1.28   

PDI -0.52 -0.69 1.80   

PH-PDI -0.57 -0.74 - -5.99 -3.66 

AN-PDI -0.53 -0.70 1.51 -5.85 -3.70 

PY-PDI -0.54 -0.71 1.30 -5.89 -3.71 

PH-PDI-PH -0.59 -0.76 1.82 -6.20 -3.79 

AN-PDI-AN -0.54 -0.70 1.52, 1.79 -5.85 -3.72 

PY-PDI-PY -0.54 -0.71 1.30, 1.79 -5.87 -3.75 
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peak at 1.5 and 1.28 V respectively while unsubstituted PDI exhibits an oxidation 

potential at 1.80 V and two reversible reduction peaks at -0.52 and -0.69 V (Figure 

4.2A). Upon substituting one/two phenyl units at the bay region, first and second 

reduction potential of PDI is shifted to -0.57/-0.59 and -0.74/-0.76 respectively (Table 

4.1). This decrease in the electron accepting ability of the phenyl derivatives is 

readily explained by the extended π-conjugation from the phenyl unit to PDI. 

AN/PY substituted PDI exhibit very feeble change in the reduction potential of PDI 

unit and oxidation potential of donor units in both dyads and triads (Table 4.1). 

Cyclic voltammogram of the near orthogonal dyads (PH-PDI, AN-PDI and PY-PDI) 

and triads (PH-PDI-PH, AN-PDI-AN and PY-PDI-PY) (Figure 4.2A) in 

dichloromethane show that the donor and acceptor units retain their individual 

electronic properties even though they are connected to each other. 

 

Figure 4.2. A) Electrochemical analysis of the triads (1 mM) in dichloromethane along with 

PDI in the presence of tetrabutylhexafluoroammoniumphosphate (100 mM) with respect to 

Ag/Ag+ electrode; B) frontier molecular orbital diagram of the triads calculated from DFT 

calculations. 
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4.3.2.1. Rehm-Weller analysis 

 In order to prove the possibility of CT in the derivatives, change in free energy 

of charge separation was calculated according to Rehm–Weller relation, 

ா்ܩ∆                                         = ܧ శ⁄ − ܧ ష⁄ − ܧ −
మ

ఌ
                              ---(4.1) 

where GET is the change in free energy of electron transfer, ‘e’ is the electronic 

charge, ‘r’ is the centroid to centroid distance between the donor and the acceptor. ‘r’ 

for AN and PY based derivatives are estimated to be 5 Å and 6 Å respectively from 

the energy optimized structure. ‘’ is the static dielectric constant of the solvent in 

which the redox potentials are being measured (dichloromethane in this case, 

=8.93). Rehm-Weller analysis of AN/PY based derivatives shows the free energy 

change, GET = –1.1 eV for electron transfer from singlet excited state of 1AN* to PDI 

and GET = -1.4 eV for ET from 1PY* to PDI in dichloromethane.  

4.3.3. Photophysical properties of dyads and triads 

Absorption spectra: The UV-vis absorption spectra of the dyads PH-PDI, AN-PDI 

and PY-PDI along with the model derivative PDI in toluene is shown in the Figure 

4.3A. All the three derivatives show the PDI characteristic S0→S1 transition at around 

450-550 nm. PH-PDI exhibits a red shifted absorption spectrum when compared to 

the model derivative PDI, which is due to the extended conjugation from phenyl 

unit to PDI. The absorption spectra of AN-PDI and PY-PDI corresponds to the sum 

of AN/PY and PDI absorption along with the broad absorption at higher wavelength 

(550-650 nm). A blue shift of 10-30 nm is observed in the absorption of PDI unit in  



Chapter 4 – Charge Transfer Facilitated Intersystem Crossing in Perylenediimide based Orthogonal Dyads and Triads 
 

95 
 

 

Figure 4.3. Steady-state absorption spectra of A) dyads and B) triads along with PDI in toluene; 

normalised steady state fluorescence spectra of C) dyads and D) triads along with PDI (ex = 350 nm) 

in toluene. 

the dyads of AN/PY-PDI when compared to the unsubstituted PDI (Table 4.2). The 

red shifted absorption observed at 550-650 nm is not witnessed in equimolar mixture 

of AN/PY and PDI. So the additional red shifted absorption and blue shift in the PDI 

unit absorption in the dyads could be attributed to the ground state charge transfer 

(GSCT) between the units. The same phenomenon was observed in the UV-vis 

absorption spectra of the triads PH-PDI-PH, AN-PDI-AN and PY-PDI-PY (Figure 

4.3B). PH-PDI-PH exhibits a red shifted absorption spectrum compared to that of 

PDI due to higher π delocalisation, while AN and PY based triads show sum of  
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Table 4.2. Photophysical properties of the dyads and triads along with PDI in toluene. 

Molecule abs, nm em, ns F, ns F CS T T, s 

PDI 488, 525 536, 577 4 0.98 - <0.01 - 

PH-PDI 500, 535 560, 600  5.0 0.95 - <0.01 - 

AN-PDI 486, 515, 580 665 (bs) 3.1 0.04 0.55 0.30 0.50 

PY-PDI 333, 351, 468, 

496, 580 

680 (bs) 5.3 0.18 0.43 0.25 0.46 

PH-PDI-PH 518, 555 600, 650 5.2 0.92 - <0.01 - 

AN-PDI-AN 463, 494, 580 675 (bs) 3.8 0.02 0.59 0.40 0.55 

PY-PDI-PY 335, 351, 455, 

485, 585 

690 (bs) 5.0 0.16 0.48 0.35 0.50 

 
absorption bands of individual units along with the additional GSCT band at higher 

wavelength region. Similar observations were made in the UV-Vis spectrum of 1,7-

(Ph2NC6H4)2PDI that is attributed to the charge transfer interactions between 

Ph2NC6H4 and PDI units[170]. 

Emission spectra: Fluorescence spectra of the dyad and triad derivatives were 

collected by exciting at the donor unit (AN/PY; 350 nm), acceptor unit (PDI; 480 nm) 

and GSCT region (570 nm). Upon excitation at 350 nm, PH-PDI in toluene exhibit red 

shifted vibration less emission when compared to the unsubstituted PDI which is 

attributed to the π conjugation from the freely rotating phenyl units (Figure 4.3C). 

Fluorescence quantum yield (F) of PH-PDI is found to be nearly quantitative (0.95) 

which is in agreement with the reported literatures (Table 4.2). Upon exciting donor 

or acceptor units in the AN/PY-PDI in toluene, highly quenched, broad emission 

spectrum was observed at higher wavelength region (650-800 nm). F was found to 
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be 0.04 for AN-PDI and 0.18 for PY-PDI in toluene solution (Table 4.2). Similar 

spectral features were obtained by exciting at the acceptor (ex =480 nm) and GSCT 

(ex =480 nm) region of the derivatives in toluene solvent. The quenched fluorescence 

in AN-PDI and PY-PDI is attributed to the photo induced electron transfer when 

compared to extended conjugation in PH-PDI which is in agreement with the earlier 

reports. Triads PH-PDI-PH, AN-PDI-AN and PY-PDI-PY also show similar 

behaviour (Figure 4.3D) in the emission spectra which is in agreement with the UV-

vis absorption studies. Zhu and co-workers showed that instead of GSCT 

interactions, conjugation effect was observed in 2-anthracene substituted 1,7-

perylenediimide dyads and triads[171]. While, aryloxy substituents at the bay 

position of PDI exhibited photoinduced electron transfer from the electron-rich 

substituent to the PDI core. Similarly, AN-(CH2)n-PDI-(CH2)n-AN triad connected 

through flexible alkyl linkers also exhibited photoinduced electron transfer based 

quenching in the PDI fluorescence[172]. In other context, 1,7-(Ph2NC6H4)2PDI 

exhibited EDA interactions in the ground state, showed a negligible fluorescence 

emission[170]. 

4.3.4. Characterization of singlet excited CT states 

  The red shifted absorption band in PH-PDI and PH-PDI-PH appears as 

extended vibronic progression of the PDI state, whereas those of dyads (AN/PY-PDI) 

and triads (AN/PY-PDI-AN/PY) appear as significant broadening on the red edge of 

their spectra. The quenched fluorescence observed for dyads and triads is the 
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characteristics of excited state CT as observed for PDI based donor-acceptor dyads. 

The magnitude of the excited-state dipole, which is indicative of the intramolecular 

charge distribution, was established using the Lippert–Mataga method (Figure 

4.4)[12, 173]. The theory predicts a linear relationship between the Stokes shift 

ߥ − ாߥ , and the polarisability function f according to the following equation, 

ߥ                                               − ாߥ = ଶ(ఓ)మ

బయ
	ቂ(ఢିଵ)
ଶఢାଵ)

− ൫ఎమିଵ൯
ଶ(ଶఎమାଵ)

ቃ                         ---(4.2) 

                                                        Δ݂ = ቂ(ఢିଵ)
ଶఢାଵ)

− ൫ఎమିଵ൯
ଶ(ଶఎమାଵ)

ቃ                                  ---(4.3) 

ߥ                                                  − ாߥ = ଶ(ఓ)మ

బయ
	Δ݂ +  (4.4)---                         ݐ݊ܽݐݏ݊ܿ

where h is Planck’s constant, c is the speed of light, ߥ is the absorption maximum 

and ߥா  is the energy of the CT emission band measured in several solvents with 

dielectric constant ϵ and index of refraction . The radius of the Onsager spherical 

cavity, ܽ, was determined to be (6.94 Å for AN-PDI; 7.24 Å for PY-PDI; 7.14 Å for 

AN-PDI-AN and 7.64 Å  for PY-PDI-PY) using the DFT optimized structures, which 

 

Figure 4.4. A) Solvent dependent fluorescence spectra of the triad AN-PDI-AN upon 

excitation with 350 nm; B) corresponding Lippert-Mataga plot.  
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is in agreement with that previously estimated for PDI based dyads[174].  is the 

change in electric dipole moment of the molecule between the excited state and the 

ground state, can be estimated from the slope of the plot of ߥ −  ா vs. Δ݂. The dipoleߥ

moment change ( is calculated to be 14.5 D for AN-PDI; 15.8 D for PY-PDI; 15.2 D 

for AN-PDI-AN and 17.1 D for PY-PDI-PY. We estimated the degree of charge 

separation in the 1CT states by using the formula, /4.8 D esu-1 Å-1 (3.16 esu Å for 

AN-PDI; 3.29 esu Å for PY-PDI; 3.17 esu Å for AN-PDI-AN and 3.57 esu Å for PY-

PDI-PY). Using the centers of the spin density distributions in AN•+/PY•+ and PDI•- 

the distance that a full charge is transferred to yield AN•+/PY•+-PDI•- is 5.6 Å. Thus, 

the estimated percentage of charge separation in 1CT is 55% in AN-PDI; 43% in PY-

PDI; 59% in AN-PDI-AN and 48% in PY-PDI-PY (Table 4.2).  

 Figure 4.5 shows the time–resolved fluorescence decay profile of AN/PY based 

PDI dyads and triads in solvents of varying polarity when excited at 375 nm and 

monitored at the charge transfer band at 700 nm. All the four derivatives exhibit 

 

Figure 4.5. Time resolved fluorescence emission profile of the triad AN-PDI-AN in toluene, 

chloroform and DMF upon excitation with 375 nm.  
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solvent dependent change in fluorescence lifetime. For example, the triad AN–PDI–

AN in toluene exhibited a mono–exponential decay having a lifetime of 5 ns. A 

systematic decrease in the lifetime with increase in solvent polarity was observed 

leading to a shorter lifetime of 2 ns in chloroform. In DMF, the triad AN–PDI–AN 

exhibited a bi-exponential decay having the lifetimes of 0.58 ns (96%) and 4.21 ns 

(4%). The minor long lived component corresponds to the LE state emission of PDI 

unit. We observed a systematic decrease in the lifetime of the CT state with increase 

in solvent polarity (upto THF) resulting in the complete disappearance of the CT 

state in DMF. 

4.3.5. Charge recombination 

 For singlet excited charge-transfer states, two basic mechanisms for intersystem 

crossing can be considered, as illustrated in Scheme 4.4[162]. In the first case, the CT 

state undergoes ISC to the triplet CT state, kRP-ISC, which is followed by return 

electron transfer in the triplet manifold to give the locally excited triplet, kCR. In the 

second, ISC occurs as a result of a simultaneous spin-flip and electron-transfer 

process, kSO-ISC, and the singlet CT state is converted directly into the locally excited 

 

Scheme 4.4. Basic ISC mechanism from singlet excited CT state (Adopted with permission 

from ref. 168. Copyright © 2016, American Chemical Society).  
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triplet state in a spin-forbidden electron-transfer reaction. Unless an intermediate 

state can be directly detected, or some specific spectroscopic information is obtained, 

it is difficult for one to distinguish between these mechanisms. For several covalently 

linked donor/acceptor excited CT states, direct experimental evidence has been 

obtained using time-resolved ESR spectroscopy that demonstrates that either 

mechanism may operate, depending upon the system. In order to understand the 

presence of triplet excited state in our derivatives upon excitation, steady state CW-

EPR was performed in chloroform solution. 

General features of transient EPR spectra: Solutions of triad AN-PDI-AN and PY-

PDI-PY in chloroform (~0.005 M) were deaerated by several freeze-thaw cycles and 

sealed under vacuum. These were placed in the cavity of an X-band EPR 

spectrometer, cooled to 20 K where the solvent is a glass, and irradiated with 

continuous wave of light. Continuous wave (CW) steady-state EPR spectra of the 

ground state were obtained using the same set-up but without light excitation 

(Figure 4.6). In the ground state (Figure 4.6 A and C) both the triads show negligible 

EPR signal due to the diamagnetic nature, while in the excited state both the triads 

exhibit broad signals which could correspond to paramagnetic transient species 

generated upon excitation (Figure 4.6B and D). The paramagnetic intermediate 

generated could be attributed to photoinduced generation of a radical ion-pair 

species in the excited state. Time resolved EPR measurements are very important to 

further characterise the dynamics of the radical ion-pair system which can lead to 

the triplet excited state via ISC (not studied in this present thesis). 
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Figure 4.6. Steady state CW-EPR spectra of A) and B) AN-PDI-AN in the absence and 

presence of light of excitation at 77 K; C) and D) PY-PDI-PY in the absence and presence of 

light of excitation at 77 K. 

4.3.6. Transient absorption spectroscopy 

4.3.6.1. Nanosecond transient absorption measurements  

  In order to understand the fate of excited CT states, we have performed solvent 

dependent nTA measurement by exciting the solution at 355 and 532 nm, 10 ns laser 

pulse (Figure 4.7). PH-PDI and PH-PDI-PH derivatives exhibit negligible transient 

absorption due to the nearly quantitative fluorescence. The transient absorption 

spectra of PY-PDI and PY-PDI-PY in toluene (Figure 4.7A) upon excitation with 355 

nm, reveals clearly the PDI triplet state with absorption maxima at 450, 540 and 660 

nm which decay on a microsecond time scale (T = 0.46 s for PY-PDI; 0.50 s for PY-
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PDI-PY). As the unsubstituted PDI exhibits negligible ISC, PDI triplet can be 

observed only from the charge recombination process in PY based dyad and triad. 

The efficiency of triplet formation (T) in toluene is calculated to be 25±2% and 

35±2% in PY-PDI and PY- PDI-PY respectively. In a moderately polar solvent like 

chloroform (Figure 4.7B), PY- PDI and PY-PDI-PY exhibit broad transient absorption 

having maxima at 400, 450, 550, 580 and 650 nm which decay with different rates. In 

order to deconvolute the complex spectrum obtained in chloroform, we have 

performed SVD followed by global analysis (which is explained in the chapter 1). 

The right singular vector at 450, 540 and 650 nm decaying with the lifetime of ≈0.45 

s is attributed to the localised triplet state of PDI while the long lived transient 

absorption observed at 400, 550 and 650 nm corresponding to PY+• and PDI−• (T = 5 

s). In the polar medium like N, N-dimethylformamide (DMF), nTA spectra of PY 

 

Figure 4.7. nTA spectra of the derivative PY-PDI-PY in A) toluene; B) chloroform and C) 

DMF upon excitation with 355 nm, 10 ns pulse. D), E) and F) corresponding SVD analysis.  
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derivatives exhibit transient absorption at 400, 550, 640, 660 and 680 nm along with 

the broad ground state bleach at 500 and 600 nm (Figure 4.7C). The peaks are 

corresponding to the connected PY+• and PDI−• which decay with the same time 

constant ca. 5 s. No signal corresponding to localised triplet state on PDI (3PDI) is 

observed in PY based derivatives in polar solvent such as DMF.  

 Solvent dependent transient absorption spectra could be explained from the 

energy level diagram which is obtained from the combination of experimental and 

computational analysis (Figure 4.8). In non-polar solvents such as toluene upon 

excitation, instantaneous electron transfer occurs from the electron donor acceptor 

complex to generate singlet excited charge transfer (1CT) state. The decay pathways 

of 1CT consist of i) ISC to generate 3PDI and ii) radiative decay to ground state 

(Figure 4.8A). Upon excitation at 440 nm, picosecond lifetime measurements show 

 

Figure 4.8. Model energy level diagrams for the excited states of dyads and triads in toluene, 

chloroform and DMF.  
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that radiative decay life time of 5 ns for PY derivatives in toluene solution and nTA 

spectra clearly establishes the presence of 3PDI which has lifetime of 0.5 s in 

toluene. On increasing the solvent polarity to chloroform, 1CT is more stabilised 

when compared to that in toluene (Figure 4.8B). Upon excitation with 440 nm, 1CT 

exhibits quenched radiative lifetime of 2 ns in chloroform. Interestingly, nTA spectra 

exhibit transient absorption corresponding to 3PDI and PY+•-PDI−• having lifetime of 

0.5 s and ≈ 5s respectively in chloroform solution (Figure 4.8B). The radical ion 

absorption bands indicate only the presence of PY+•-PDI−•, but do not give any 

information about the spin state. The very long lifetime, however, can only be 

explained assuming that the PY+•-PDI−• is in triplet state. In addition, reduced 

lifetime of the transient species upon purging with oxygen further confirms the 

triplet nature of the excited CT state. In extremely polar solvent such as DMF, only 

the signal corresponding to PY+•-PDI−• is observed (Figure 4.8C). In DMF, 1CT is 

stabilised well below the 3PDI thereby, only the long lived triplet excited state of 

radical ions are observed in the nTA spectra as reported earlier[175]. AN based 

derivatives AN-PDI and AN-PDI-AN also exhibit similar behaviour in solvent 

dependent nTA measurements. 

4.3.6.2. Femtosecond transient absorption measurements 

 In order to characterize the formation of transient intermediates involved in the 

excited state of the derivatives we have carried out the femtosecond transient 

absorption measurements of the triads AN-PDI-AN and PY-PDI-PY in chloroform  
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with excitation at 400 nm. Figure 4.9A shows fTA spectra of the derivative AN-PDI-

AN in chloroform upon excitation with 400 nm. Negative band centered around 500 

nm that corresponds to the ground state bleach which is in accordance with UV-vis 

absorption spectrum of AN-PDI-AN in chloroform. Positive absorption is attributed 

to excited state transient species such as excited singlet, triplet and radical ions.  

 

Figure 4.9. fTA spectra of the triads A) AN-PDI-AN and B) PY-PDI-PY in chloroform 

upon excitation with 400 nm laser; insets show the spectra obtained from the corresponding 

SVD analysis. 
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Singular value decomposition (SVD) of ΔA versus time and the wavelength based 

three-dimensional map followed by global analysis yielded four principle 

components (inset of Figure 4.8A). i) absorption from lower singlet excited state 

(600-770 nm) to higher singlet excited state (black trace; S1→Sn); ii) stimulated 

emission at 600-750 nm (blue trace; S1→S0); iii) transient absorption of radical 

intermediates AN•+-PDI−• (red trace; 490 and 700 nm); iv) triplet absorption at 430, 

550 and 630 nm (pink trace; T1→Tn). Due to the ultrafast nature of ISC, no growth is 

observed for the triplet formation in the fTA spectra. So we could not extract any 

kinetic parameters from the fTA spectra analysis. A similar behaviour is observed in 

PY-PDI-PY in chloroform upon excitation with 400 nm (Figure 4.9B).  

4.4. Conclusions 

 We have demonstrated the successful synthesis of PDI acceptor based near- 

orthogonal D-A dyads and D-A-D triads. Structure optimisation and electrochemical 

analysis of the derivatives confirm the near-orthogonality between the units. Phenyl 

substituted PDIs exhibit extended conjugation while anthracene and pyrene 

substituted PDIs show donor-acceptor character due to the negligible orbital overlap 

between AN/PY and PDI. Existence of ground state electron donor acceptor 

interactions in AN/PY derivatives facilitates the instantaneous charge separation 

between the units to generate AN+•-PDI−• and PY+•-PDI−•. Phenyl substituted PDIs 

exhibit nearly quantitative fluorescence quantum yield (F≈0.95) while the AN and 

PY substituted show highly quenched fluorescence (F≈0.05) due to the 
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photoinduced electron transfer. Feasibility of electron transfer in the derivatives was 

estimated by calculating the free energy change for electron transfer from Rehm-

Weller analysis. Charge transfer states were further characterised from solvent 

dependent time resolved fluorescence and Lippert-Mataga analysis. Excited state 

intersystem crossing properties of the derivatives were studied by femtosecond and 

nanosecond transient absorption spectroscopy by varying the solvent polarity. 

Solvent dependent nTA spectra of the dyads and triads show that non-polar solvent 

facilitate the formation of 3PDI while long lived triplet charge separated states 3(D+•-

A−•) are formed in polar solvents. Fully conjugated PH-PDI and PH-PDI-PH show 

neither CT nor ISC in the excited state, but only nearly quantitative fluorescence.  

4.5. Experimental section: 

Materials and methods: As described in the Chapter 2. 

Computational details: Geometry optimisation of all the derivatives was performed 

by DFT calculations using nonlocal hybrid three-parameter Lee-Yang-Parr (B3LYP) 

level of theory (B3LYP/6-311G++(2d,2p)) as implemented in the Gaussian 09W 

program suite.  

Electron paramagnetic resonance (EPR) spectroscopy: Continuous wave EPR (CW-

EPR) measurements with X band (8.75-9.65 GHz) were carried using JEOL JES-

FA200 ESR spectrometer at room temperature and liquid nitrogen (77 K) 

temperatures. Samples were prepared by loading the THF solutions of PA in 5 mm 

o.d. (4 mm i.d.) quartz tubes, subjecting them to nitrogen purging cycles and was 

sealed later using a rubber septum. Samples were photoexcited inside the EPR cavity 

with a USHIO Optical Modulex-XENON lamp-ES-UXL 500 with an input current of 

20 amperes.  
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Synthesis and characterisation 

General Procedure: 200 mg of PDI-Br2 (synthesis of PDI-Br2 is explained in chapter 

2) was taken with 20 mL of distilled THF in nitrogen atmosphere. 10 mL of 2 M 

K2CO3 solution was added and the mixture was stirred under nitrogen flushing to 

remove the dissolved oxygen. (0.1 eq) of Pd(PPh3)4 was added and flushed with 

nitrogen for 10 more minutes. One and two equivalents of aryl boronic acid 

(phenylboronic acid, 9-anthracenylboronic acid and 1-pyrene-boronic acid) were 

added to synthesise desired dyads and triads respectively. The reaction mixture was 

refluxed at 65 oC for 12 hours. After the completion of the reaction, reaction mixture 

was poured into 50 mL of 1N HCl and the product was extracted with 

dichloromethane. Organic layer was washed with water, brine solution and it was 

dehydrated using anhydrous sodium sulphate. Dichloromethane was distilled out 

under reduced pressure to get crude product. The product was purified using 

column chromatography using dichloromethane as eluent.  

PH-PDI: Yield: 60%; m. p. >300 °C. 1H NMR (500 MHz, CDCl3, δ): 8.62 (m, 2H), 8.59 

(m, 3H), 8.06 (m, 1H), 7.78 (m, 1H), 7.46 (m, 3H), 7.39 (m, 2H), 4.27(t, 2H), 4.22 (t, 2H), 

4.13 (m, 4H), 1.97 (m, 4H), 1.95 (m, 6H) ; 13C NMR (125 MHz, CDCl3, δ): 171.20, 

163.35, 163.25, 141.80, 137.96, 137.39, 136.45, 136.18, 134.99, 133.08, 132.57, 129.45, 

128.87, 128.42, 128.31, 128.21, 127.44, 125.78, 124.68, 122.36, 122.09, 62.25, 37.54, 27.22, 

20.87; IR (KBr): 3060, 2948, 1730, 1694, 1645, 1592 and 1405 cm-1; Anal. Calcd for 

C40H30N2O8: C, 72.06; H, 4.54; N, 4.20. Found: C, 72.00; H, 4.48; N, 4.18. 

AN-PDI: Yield: 40%; m. p. >300 °C. 1H NMR (500 MHz, CDCl3, δ): 8.75 (m, 2H), 8.64 

(m, 3H), 8.45 (s, 1H), 8.09 (d, J = 8.6 Hz, 2H), 7.60 (d, J = 8.6 Hz, 1H), 7.47 (d, J = 8.8 

Hz, 2H), 7.42 (m, 2H), 7.34 (d, J=7.85, 1H), 7.21 (m, 2H), 4.27 (t, J = 7.1 Hz, 2H), 4.11 (t, 

J = 6.3, 2H), 4.09 (m, 4H), 2.06 (m, 2H), 1.96 (s, 3H), 1.92 (m, 2H), 1.88 (s, 3H); 13C 

NMR (125 MHz, CDCl3, δ): 171.07, 171.00, 163.60, 163.48, 163.19, 163.08, 138.14, 

138.09, 135.82, 135.43, 134.90, 134.76, 134.69, 132.12, 131.34, 131.09, 131.06, 129.22, 
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129.03, 128.93, 128.54, 128.41, 128.10, 128.02, 127.16, 125.93, 124.81, 123.70, 123.25, 

123.20, 123.01, 122.66, 122.28, 62.32, 60.39, 37.74, 37.54, 27.38, 27.22, 21.04, 20.93, 20.85 

and 14.20; IR (KBr): 3041, 2964, 1738, 1701, 1650, 1587 and 1410cm-1; Anal. Calcd for 

C48H34N2O8: C, 75.19; H, 4.47; N, 3.65. Found: C, 75.22; H, 4.45; N, 3.58. 

PY-PDI: Yield: 45%; m. p. >300 °C. 1H NMR (500 MHz, CDCl3, δ): 8.70 (m, 1H), 8.65 

(m, 2H), 8.59 (m, 2H), 8.24 (m, 2H), 8.12 (m, 3H) 7.98 (m, 1H), 7.90 (m, 1H), 7.85 (m, 

1H), 7.79 (m, 1H), 7.59 (m, 1H), 7.41 (m, 1H), 4.15 (m, 2H), 4.11 (m, 4H), 4.02 (m, 2H), 

2.07 (m, 2H), 1.96 (s, 3H), 1.92 (m, 2H), 1.91 (s, 3H); 13C NMR (125 MHz, CDCl3, δ): 

171.03, 170.94, 163.57, 163.46, 163.31, 163.03, 140.33, 137.56, 137.01, 135.24, 134.95, 

134.66, 134.06, 131.75, 131.47, 131.16, 131.10, 131.07, 130.55, 129.20, 129.18, 128.91, 

128.71, 128.52, 128.08, 127.69, 127.38, 127.34, 126.58, 126.44, 126.40, 126.06, 125.74, 

125.65, 124.84, 123.67, 123.53, 123.15, 122.88, 122.19, 122.09, 62.30, 62.25, 60.35, 37.73, 

37.53, 31.56, 27.42, 27.26, 22.62, 20.90, 20.80, 14.18, 14.06; IR (KBr): 3061, 2966, 1730, 

1690, 1654, 1600, 1440 cm-1; Anal. Calcd for C50H34N2O8: C, 75.94; H, 4.33; N, 3.54. 

Found: C, 75.90; H, 4.35; N, 3.58. 

PH-PDI-PH: Yield: 55%; m. p. >300 °C. 1H NMR (500 MHz, CDCl3, δ): 8.54 (s, 2H), 

8.07 (d, J=8.15, 2H), 7.73 (d, J = 8.15 Hz, 2H), 7.46 (m, 10H), 4.24(t, J = 7.05 Hz, 4H), 

4.09 (t, J = 6.25 Hz, 4H), 1.99 (m, 4H), 1.94 (s, 6H) ; 13C NMR (125 MHz, CDCl3, δ): 171, 

163.48, 142.19, 141.21, 135.40, 134.43, 130.23, 129.66, 129.01, 128.45, 128.21, 127.86, 

127.27, 125.91, 124.65, 122.36, 62.28, 37.67, 27.37, 20.92; IR (KBr): 3043, 2930, 1745, 

1690, 1650 and 1587 cm-1; Anal. Calcd for C46H34N2O8: C, 74.38; H, 4.61; N, 3.77. 

Found: C, 74.50; H, 4.55; N, 3.78. 

AN-PDI-AN: Yield: 60%; m. p. >300 °C. 1H NMR (500 MHz, CDCl3, δ): 8.73 (s, 2H), 

8.54 (s, 2H), 8.20 (d, J = 8.6 Hz, 4H), 7.78 (d, 8.4 Hz, 2H), 7.64 (m, 6H), 7.53 (t, J = 3.5 

Hz, 4H), 7.35 (t, J = 3.7 Hz, 4H), 4.18(t, J = 7.1 Hz, 4H), 4.09 (t, J = 6.3 Hz, 4H), 1.99 (m, 

4H), 1.94 (s, 6H) ; 13C NMR (125 MHz, CDCl3, δ): 171.00, 163.25, 163.2, 137.56, 137.34, 

136.0, 135.18, 134.99, 132.08, 130.57, 129.31, 128.88, 128.45, 128.31, 128.26, 127.24, 
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125.88, 124.88, 122.56, 122.19, 62.25, 37.54, 27.22, 20.87; IR (KBr): 3051, 2956, 1737, 

1697, 1658, 1597, 1400, 1330, 1244, 1178, , 813, 734 cm-1;Anal. Calcd for C64H42N2O8: C, 

78.97; H, 4.49; N, 2.97. Found: C, 78.60; H, 4.35; N, 2.78. 

PY-PDI-PY: Yield: 50%; m. p. >300 °C. 1H NMR (500 MHz, CDCl3, δ): 8.72 (s, 2H), 

8.31 (m, 1H), 8.25 (m, 2H), 8.18 (m, 5H), 8.14 (m, 5H), 8.10 (m, 1H), 8.05 (m, 1H), 7.91 

(m, 3H), 7.70 (m, 2H), 7.55 (m, 2H), 4.10 (m, 4H), 4.05 (m, 4H), 1.97 (m, 4H), 1.94 (s, 

6H) ; 13C NMR (125 MHz, CDCl3, δ): 171.10, 163.25, 163.20, 139.74, 139.62, 137.06, 

136.98, 135.19, 134.14, 134.09, 131.74, 131.68, 131.44, 131.11, 131.00, 129.99, 129.90, 

129.85, 129.40, 129.19, 129.17, 128.87, 128.54, 128.50, 128.45, 127.92, 127.85, 127.74, 

127.42, 127.33, 127.03, 126.64, 126.58, 126.37, 126.18, 126.06, 125.82, 125.68, 125.65, 

125.59, 124.86, 124.80, 123.84, 123.62, 122.18, 121.91, 121.83, 121.76, 62.24, 37.54, 27.30, 

27.27, 20.90, 20.87, 14.21; IR (KBr): 3060, 2970, 1724, 1690, 1668, 1607, 1390 cm-1; Anal. 

Calcd for C66H42N2O8: C, 79.99; H, 4.27; N, 2.83. Found: C, 79.90; H, 4.25; N, 2.80. 
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