PHY 4105: Quantum Information Theory Tutorial Problems

Anil Shaji School of Physics, IISER Thiruvananthapuram (Dated: September 27, 2013)

- 1. Show that an operator ρ is a pure state density matrix if and only if $\rho = \rho^{\dagger}$, $\operatorname{tr}(\rho^2) = 1$ and $\operatorname{tr}(\rho^3) = 1$.
- 2. Consider a state which has bloch vector $\vec{s} = \vec{e_z}/2$,

$$\rho = \frac{3}{4} |e_z\rangle \langle e_z| + \frac{1}{4} |-e_z\rangle \langle -e_z| = \frac{1}{2} \left(\mathbbm{1} + \frac{1}{2} \sigma_z \right),$$

- (a) Give ensemble decompositions for ρ in which all pure states in the decomposition are selected from those with $\langle \sigma_z \rangle = 1/2$, (i) Two such states, (ii) Three such states, (iii) All such states.
- (b) Give an ensemble decomposition for ρ that includes all pure states (as an integral over the bloch sphere).
- 3. Consider the Greenberger-Horn-Zeilinger (GHZ) state

$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|000\rangle - |111\rangle).$$

- (a) Show that the GHZ state is the +1 eigenstate of the operators $X \otimes Y \otimes Y$, $Y \otimes X \otimes Y$ and $Y \otimes Y \otimes X$.
- (b) Use the result above to argue that each qubit has well defined values for X and Y. For qubit j denote these values by x_j and y_j . What does local realism predict for the product of outcomes of measurements of X on each qubit.
- (c) What does quantum mechanics predict for the product of outcomes of measurements of X on each qubit.
- 4. Consider two systems, A of dimension d_A and B of dimension d_B . For an arbitrary pure state $|\Psi\rangle = \sum_{j,k} c_{jk} |e_j, f_k\rangle$,
 - (a) Show that $|\Psi\rangle$ can be brought to the Schmidt form by using the singular value decomposition of the matrix whose entries are c_{jk} and find the Schmidt vectors for the two sub-systems in terms of the unitary matrices involved in the Schmidt decomposition.
 - (b) Now suppose the two systems have the same dimension d. A maximally entangled state of A and B is one such that the marginal density operators are maximally mixed, i.e., ρ_A = 1_A/d and ρ_B = 1_B/d. Find the conditions on c_{jk} such that |ψ⟩ is maximally entangled, and discuss what this means for the singular values of c_{jk} and thus for the Schmidt coefficients.