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Pauli representation of Bell basis states

We have seen that any operator can be expanded in the Pauli basis as

ρ =
1

4

∑
αβ

ραβσα ⊗ σβ, with ραβ = tr(ρσα ⊗ σβ), ρ00 = 1.

We can do an expansion of this sort for the Bell basis states,

|Φ+〉〈Φ+| = 1

2
(|00〉〈00|+ |11〉〈11|+ |00〉〈11|+ |11〉〈00|).

Using

|00〉〈00| =
1

2
(11 + Z)⊗ 1

2
(11 + Z)

|11〉〈11| =
1

2
(11− Z)⊗ 1

2
(11− Z)

|00〉〈1| =
1

2
(X + iY )⊗ 1

2
(X + iY )

|11〉〈00| =
1

2
(X − iY )⊗ 1

2
(X − iY ),

we get

|Φ+〉〈Φ+| = |β00〉〈β00| =
1

4

(
11⊗ 11 + Z ⊗ Z +X ⊗X − Y ⊗ Y

)
.

Similarly we have

|Φ−〉〈Φ−| = |β10〉〈β10| =
1

4

(
11⊗ 11 + Z ⊗ Z −X ⊗X + Y ⊗ Y

)
|Ψ+〉〈Ψ+| = |β01〉〈β01| =

1

4

(
11⊗ 11− Z ⊗ Z +X ⊗X + Y ⊗ Y

)
|Ψ−〉〈Ψ−| = |β11〉〈β11| =

1

4

(
11⊗ 11− Z ⊗ Z −X ⊗X − Y ⊗ Y

)
The last state is rotationally invariant. This is because

u⊗ u(σj ⊗ σj)u⊗ u = σkRkj ⊗ σlRlj = σk ⊗ σl(RRT )kl = σk ⊗ σk.

It is rather useful to note that the Z operator represents a 180 degree rotation about the z−axis

and X represents a 180 degree rotation around the x−axis and so on. In other words

ZXZ = −X, ZY Z = −Y, ZZZ = Z, XXX = X, XY X = −Y, XZX = −Z.
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In general we can write the Pauli representation of the four Bell states as

|βab〉〈βab| =
1

4

(
11⊗ 11 + (−1)bZ ⊗ Z + (−1)aX ⊗X − (−1)a+bY ⊗ Y

)
.

Inverting these relations we find that

11⊗ 11 = +|β00〉〈β00|+ |β01〉〈β01|+ |β10〉〈β10|+ |β11〉〈β11|

Z ⊗ Z = +|β00〉〈β00|+ |β01〉〈β01| − |β10〉〈β10| − |β11〉〈β11|

X ⊗X = +|β00〉〈β00| − |β01〉〈β01|+ |β10〉〈β10| − |β11〉〈β11|

Y ⊗ Y = −|β00〉〈β00|+ |β01〉〈β01|+ |β10〉〈β10| − |β11〉〈β11|.

The four operators above commute with each other but any two will form a complete commuting

set with the other two being products of the two. We also know that

Z ⊗ Z|βab〉 = (−1)b|βab〉,

so that a measurement of Z ⊗ Z determines the parity bit. Similarly a measurement of X ⊗ X
determines the phase bit:

X ⊗X|βab〉 = (−1)a|βab〉.

We also have

Y ⊗ Y |βab〉 = −ZX ⊗ ZX|βab〉 = −(−1)a+b|βab〉.

CHSH Bell inequality (Clauser-Horne-Shimony-Holt-Bell)

The question addressed by the CHSH inequality (and Bell’s inequality) is whether quantum

mechanics is a local realistic theory. So what does local realism mean? It is closely related to the

question we have asked before as to whether we can attribute specific states to subsystems of a

composite quantum system. We have seen that indeed we can assign mixed states to the subsystems

when the overall state is entangled. However is that consistent with the rules of classical physics

or is it different?

Suppose we are going to measure the operator σ~a on a qubit. Prior to the measurement can

be ascribe a value to the projection of the state along ~a as an objective property of the system

A. Similarly for subsystem B of the composite system AB can we assign the value σ~b = ±1 as an

objective property of system B? Realism implies that we can indeed assign such values as objective

properties of the two subsystems.

Another requirement of classical physics (including relativity) is that if the two subsystems

happen to be well segregated (or maybe even well separated in space), the a measurement of

subsystem A should not affect B and in particular it should not affect the objective values of B.

This no-disturbance is enforced by locality. So together you have local realism.

Consider the following experimental set up. A pair of qubits labeled A and B is produced by

some physical process like, say, the decay of a spin zero particle into two spin 1/2 particles and then
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they move away in opposite directions. When they are well separated, Stern-Gerlach (projective)

type measurements are done on both particles. The experimenter at either end has two choices

for the direction along which the Stern-Gerlach apparatus can be oriented. These directions are

labeled by ~a1 and ~a3 on subsystem A and ~b2 and ~b4 on subsystem B as shown in the figure below:

~a1

~a3

~b2

~b4

A B

Now consider the quantity∣∣σ~a1(σ~b2 − σ~b4) + σ~a3(σ~b2 + σ~b4)
∣∣ ≡ |Ŝ|,

where σ~a and σ~b denote the outcome of the measurement on the respective qubit. If we assume local

realism then each of these measurement results have a value ±1 independent of the measurement

setting used in the particular instance of the experiment by each experimenter. This means that

we have the following possible values for the measurement result as well as for |Ŝ| assigned as

objective properties of subsystems A and B:

σ~a1 σ~a3 σ~b2 σ~b4 |Ŝ|
1 1 1 1 2

1 1 1 −1 2

1 1 −1 1 2

1 1 −1 −1 2

1 −1 1 1 2

1 −1 1 −1 2

1 −1 −1 1 2

1 −1 −1 −1 2

−1 1 1 1 2

−1 1 1 −1 2

−1 1 −1 1 2

−1 1 −1 −1 2

−1 −1 1 1 2

−1 −1 1 −1 2

−1 −1 −1 1 2

−1 −1 −1 −1 2

So we see that assuming local realism we get∣∣σ~a1(σ~b2 − σ~b4) + σ~a3(σ~b2 + σ~b4)
∣∣ ≡ |Ŝ| = 2
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Now suppose we have an ensemble of identically prepared qubit pairs and we make the measure-

ments above and take the average the function given above of measurement results then using the

fact that

|〈· · · 〉| ≤ 〈| · · · |〉,

we get ∣∣C(~a1,~b2) + C(~a3,~b2) + C(~a3,~b4)− C(~a1,~b4)
∣∣ ≤ 2, C(~ai,~bj) ≡ 〈σ~aiσ~bj 〉.

This is the CHSH inequality. Any local realistic system has to satisfy this inequality.

Now let us look whether indeed a pair of quantum systems in an arbitrary bipartite state does

satisfy the CHSH inequality. Let us assume that the pair of qubits is in the singlet state,

|β11〉 =
1√
2

(|01〉 − |10〉).

For the singlet state we have

C(~a,~b) = 〈σjaj ⊗ σkbk〉 = ajbk〈σj ⊗ σk〉 = ajbk(−δjk) = −~a ·~b,

using

|β11〉〈β11| =
1

4

(
11⊗ 11− Z ⊗ Z −X ⊗X − Y ⊗ Y

)
.

Let us choose the vectors ~a1, ~a3, ~b2 and ~b4 as shown below,

~a1 ~b2
~a3

~b4

The angle between each adjacent pair of vectors is fixed at θ. So

C(~a,~b) = −~a ·~b = − cos θab,

and

S =
∣∣C(~a1,~b2) + C(~a3,~b2) + C(~a3,~b4)− C(~a1,~b4)

∣∣ =
∣∣3 cos θ − cos 3θ

∣∣,
which for θ = π/4 has the value 2

√
2 > 2. A different way of seeing this is that for θ = π/4 we can

choose

~a1 = êx, ~b2 =
1√
2

(êy + êx), ~a3 = êy, ~b4 =
1√
2

(êy − êx),

so that

S =

〈
X ⊗ 1√

2
(Y +X) + Y ⊗ 1√

2
(Y +X) + Y ⊗ 1√

2
(Y −X)−X ⊗ 1√

2
(Y −X)

〉
=
√

2〈X ⊗X + Y ⊗ Y 〉

= 2
√

2〈|β01〉〈β01| − |β11〉〈β11|〉.

We see that S is maximum if the state in which the expectation value is taken is either |β01〉
(correlations) or the state |β11〉 (anticorrelations).
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