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Quantum teleportation

Alice and Bob each has one of the pair of qubits in the entangled state

|βAB00 〉 =
1√
2

(|00〉+ |11〉).

Victor hands over to Alice a qubit in the state |ψV 〉 so that the total three qubit state is at this

time,

|Ψ〉 = |ψV 〉 ⊗ |βAB00 〉 =
∑
a,b

|βV Aab 〉〈βV Aab |Ψ〉,

where 〈βV Aab |Ψ〉 is a vector in Bob’s Hilbert space times the magnitude of the overlap of |〉βV Aab with

the part of |Ψ〉 in the V A Hilbert space. Essentially we have expended the V A part of the state

in the bell basis for those two qubits. Now consider the relative state

〈βV A00 |Ψ〉 = 〈βV A00 |
(
|ψV 〉 ⊗ |βAB00 〉

)
=

1

2

(
〈00|+ 〈11|

)(
|ψV 〉 ⊗ (|00〉+ |11〉)

)
=

1

2

(
〈0|ψV 〉|0〉B + 〈1|ψV 〉|1〉B

)
=

1

2
|ψB〉.

Using

|βab〉 = ZaXb ⊗ 11|β00〉 ⇔ 〈βab|XbZa ⊗ 11,

we get

〈βV Aab |Ψ〉 = 〈βV A00 |
(
XbZa ⊗ 11

)(
|ψV 〉 ⊗ |βAB00 〉

)
=

1

2

(
〈00|+ 〈11|

)(
XbZa|ψV 〉 ⊗ (|00〉+ |11〉)

)
=

1

2

(
〈0|XbZa|ψV 〉|0〉B + 〈1|XbZa|ψV 〉|1〉B

)
=

1

2
XbZa|ψB〉.

So we have

|Ψ〉 =
1

2

∑
ab

|βV Aab 〉 ⊗XbZa|ψB〉

=
1

2

(
|βV A00 〉 ⊗ |ψB〉+ |βV A10 〉 ⊗ Z|ψB〉+ |βV A01 〉 ⊗X|ψB〉+ |βV A11 〉 ⊗XZ|ψB〉

)
.
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To teleport the qubit given to her by Victor, Alice takes the pair of states in her hand and measures

it in the bell basis. She would get one of four results with equal chance. After the measurement

there is no trace of |ψV 〉 left at Alices’ end and all that is left is a combined bell state of the V A

qubits. She then sends over the results of her measurements in the form of two bits, a and b over to

Bob over a classical communication channel. Bob can drive his qubit to the state |ψ〉 by applying

XbZa to his qubit. Thus the arbitrary qubit state |ψ〉 gets teleported from Alice to Bob.

One has to see teleportations in the context of indistinguishability of quantum particles. The

particle is essentially labelled only by its state except for labels common to all the qubits. For

instance if the qubits are spin-1/2 electrons, then one electron is indistinguishable from the other

except that each of the three are labeled by the specific states they are in. So when the state of

the qubit handed to Alice by Victor is transferred over to the electron with Bob, then effectively

Bob is indeed getting Victors qubit in all respects.

Polar decomposition and singular values

Given any operator (not necessarily Hermitian), A†A and AA† are positive operators with the

same eigenvalues whose square roots are the singular values of A. Moreover there exists a unitary

operator U such that

A = U
√
A†A =

√
AA†U,

where the above decomposition of A is called the Polar decomposition. The unitary U is unique if

A†A is invertible (no null space). For the two positive operators we have the eigen-decomposition,

A†A =
∑
j

λ2j |ej〉〈ej |

AA† =
∑
j

λ2j |fj〉〈fj |.

The vectors |ej〉 are called the right singular vectors of A and |fj〉 are called the left singular vectors

of A. In terms of the left and right singular vectors we can expand the operator as

A =
∑
j

λj |fj〉〈ej |.

Note that this reduces to the eigenvalue decomposition when the left and right singular eigenvectors

are duals of each other. In that case A†A = AA† which means that A is a normal operator as

expected. We can also identify the unitary U above as

U =
∑
j

|fj〉〈ej | U |ej〉 = |fj〉,

so that

A = U
√
A†A =

(∑
j

|fj〉〈ej |
)∑

k

λj |ek〉〈ek| =
∑
j

λj |fj〉〈ej | =
√
AA†U.
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The freedom in U is with respect to how it maps vectors in the null space of A†A to vectors in the

null space of AA†. If there are no zero eigenvalues for A†A (A†A is invertible) then this freedom is

not present and U is unique.

Related to the Polar decomposition of an operator we also have an singular value decomposition

as

A = V ΛW †, Λ =
∑
j

|gj〉〈gj |,

where |gj〉 is an arbitrary orthonormal basis in which Λ is diagonal. The eigenvalues of Λ are the

singular values of A. We can easily see

A =
∑
j

λjV |gj〉〈gj |W †, V |gj〉 = |fj〉 and 〈gj |W † = 〈ej |.

Relative state decomposition

Consider a bipartite pure state,

|Ψ〉 =
∑
α

|fα〉〈fα|Ψ〉 =
∑
α

√
pα|φα〉 ⊗ |fα〉, 〈fα|Ψ〉 ≡

√
pα|φα〉.

We have found the relative state with respect to the orthogonal basis |fα〉 on B of the bipartite

state |Ψ〉. We then have

ρA = trB(|Ψ〉〈Ψ|) = trB

(∑
α,β

√
pα
√
pβ|φα〉〈φβ| ⊗ |fα〉〈fβ|

)
=
∑
α,β

√
pα
√
pβ|φα〉〈φβ|〈fβ|fα〉

=
∑
α

pα|φα〉〈φα|.

The relative state decomposition of the bipartite pure state directly gives us an ensemble decom-

position for one of the subsystems.

Schmidt decomposition

Any bipartite pure state can be written as

|Ψ〉 =
∑
j

√
λj |ej〉 ⊗ |fj〉,

where |ej〉 and |fj〉 form orthonormal bases for HA and HB. The
√
λj are non-negative Schmidt

coefficients and as consequence of the decomposition we have

ρA =
∑
j

λj |ej〉〈ej |, ρB =
∑
j

|fj〉〈fj |.
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The Schmidt coefficients provide a complete characterization of the entanglement in bipartite pure

states. The coefficients are invariant under local unitaries. There is no Schmidt like decomposition

for three or more systems.

Proof: Diagonalize

ρB = trA(|Ψ〉〈Ψ|) =
∑
j

λj |fj〉〈fj |.

Now form the relative state decomposition of |Ψ〉 with respect to the eigenvectors |fj〉 of ρB as

|Ψ〉 =
∑
j

|φj〉 ⊗ |fj〉, |φj〉 ≡ 〈fj |Ψ〉.

Now we have

ρB = trA(|Ψ〉〈Ψ|) = trA

(∑
j,k

|φj〉〈φk| ⊗ |fj〉〈fk|
)

=
∑
j,k

〈φj |φk〉|fj〉〈fk|

=
∑
j

λj |fj〉〈fj |.

Comparing the last two equations we have

〈φj |φk〉 = λjδjk.

This means that |φj〉 form an orthogonal set. Defining the orthonormal set

|ej〉 =
|φj〉√
λj
,

we get

|Ψ〉 =
∑
j

√
λj |ej〉 ⊗ |fj〉.

Purification

A pure state |Ψ〉 is a purification of ρA if ρA = tr(|Ψ〉〈Ψ|). A purification is a useful analytical

tool, replacing a mixed state with a pure-state analysis in a larger space (The church of the larger

Hilbert space).

• Ensemble decomposition: ρA =
∑

α pα|ψα〉〈ψα|

• Purification: Ψ =
∑

α

√
pα|ψα〉 ⊗ |fα〉.

The purification is a relative state decomposition with respect to a set of orthonormal vectors |fα〉
in HB.


