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Measurement models

Let us now see how we can describe the situation where we model a quantum measurement as a

process in which the quantum system is coupled to a measuring device and then the measurement

is completed by observing the apparatus and inferring some property of the quantum system.

We have a system Q in the state ρ which is brought in contact with an ancilla system A (which

can be the measuring device) in a state

σ =
∑
k

λk|ek〉〈ek|,

where the states |ek〉 are eigenstates of σ. The two systems interact for some time with the

interaction described by a unitary operator U acting on the joint system of Q and A. The ancilla

is then subject to a vonNeumann measurement described by the orthogonal projectors

Pα =
∑
j

|fαj〉〈fαj |,

The α index denotes the state of the system that corresponds to the subspace indexed by j of the

ancilla. In other words there might be more than one state of the ancilla corresponding to a given

state of the system. Typically this is the case since the ancilla is taken to be a larger system. The

states |fαj〉 satisfies the completion relation,

11A =
∑
α,j

|fαj〉〈fαj | =
∑
α

Pα.

The Greek index α therefore labels the outcome of the measurement. If the ancilla is observed

in the subspace Sα after the measurement, then we can compute the un-normalized state of the

system after the measurement using the standard rules of vonNeumann measurements on the QA

system and then tracing out the ancilla as

trA(PαUρ⊗ σU †Pα) = trA(PαUρ⊗ σU †) = Aαρ,

where Aα is a linear map on system density operators. Any linear map on density operators is

called a super-operator and the super-operator defined above is called a quantum operation. This

particular method of defining a set of quantum operations in terms of the interaction of the system

with an ancilla followed by a measurement of the ancilla is called a measurement model.
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Inserting the expression we have for the ancilla projector Pα and the initial state of the ancilla

into the expression above gives us a form for the quantum operations only in terms of system

operators as

Aα(ρ) =
∑
j,k

√
λk〈fαj |U |ek〉ρ〈ek|U †|fαj〉

√
λk =

∑
j,k

AαjkρA
†
αjk.

The operators

Aαjk =
√
λk〈fαj |U |ek〉,

are said to provide an operator sum decomposition (Kraus decomposition) of the quantum operation

Aα and are therefore called operation elements or Kraus operators. The Kraus operators are defined

by the relative states in the decomposition of U |ψ〉 ⊗ |ek〉 relative to the ancilla basis |fαj〉:

U |ψ〉 ⊗ |ek〉 =
∑
α,j

〈fαj |U |ek〉|ψ〉 ⊗ |fαj〉 =
∑
α,j

1√
λk
Aαjk|ψ〉 ⊗ |fαj〉.

The Kraus operators satisfy the completeness relation,∑
α,j,k

A†
αjkAαjk =

∑
αjk

λk〈ek|U †|fαj〉〈fαj |U |ek〉 = trA(U †Uσ) = trA(11⊗ 11σ) = 11.

The probability of getting the result α in the measurement of the ancilla is, from the standard

rules for an orthogonal projective measurement, is

pα = tr(PαUρ⊗ U †) = tr(Aα(ρ)) = tr

(
ρ
∑
jk

A†
αjkAαjk

)
= tr(ρEα).

The operators

Eα =
∑
jk

A†
αjkAαjk =

∑
jk

λk〈ek|U †|fαj〉〈fαj |U |ek〉 = trA(U †PαUPα),

are positive operators and satisfy the completeness relation as shown above. Any measurement

model therefore gives rise to a POVM that describes the measurement statistics. The normalized

post measurement state conditioned on the result α is

ρα =
Aα(ρ)

tr
(
Aα(ρ)

) =
Aα(ρ)

pα
=

1

pα

∑
j,k

AαjkρA
†
αjk.

If we are ignorant about the result of the measurement on the ancilla then the post-measurement

state is obtained by averaging over the possible measurement results,

ρ′ =
∑
α

pαρα =
∑
α

Aα(ρ) = trA(Uρ⊗ σU †) =
∑
α,j,k

AαjkρA
†
αjk ≡ A(ρ).

This is in fact the dynamics one would get in the absence of any measurement on the ancilla or,

formally, for a completely uninformative measurement on the ancilla (Pα = 11A).
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A primary quantum system that is exposed to an initially uncorrelated environment always

has dynamics described by a quantum operation, whether or not a measurement is made on the

environment. If we do make a measurement on the environment, the system state after the dy-

namics is conditioned on the result of the measurement through the projection operator Pα. The

corresponding quantum operation A is said to be trace decreasing because the trace of the output

is generally smaller than the trace of the input, the reduction factor being the probability for the

measurement result α. If we do not make a measurement on the environment, we have an open-

system dynamics described by the operation A, which is said to be trace preserving because the

trace of the output is the same as the trace of the input. Formally A is the quantum operation for a

completely uninformative measurement on the ancilla, which has one outcome Pα = 11A. Moreover,

we can think of any trace-preserving open-system dynamics as coming from an environment that

“monitors” the system, even though we acquire none of the monitored information; this monitoring

destroys quantum coherence in Q, a process called decoherence.

The indices j and k that are summed over in the operator sum representation of A represents

information that we could have had but do not have. This is suggested by the way we treat the

measurement result α by summing over it if we do not know the result. We can always imagine

another agency; more capable than ourselves; who has access to more fine grained information

than what we have. Before the measurement this person knows the particular eigenstate |ek〉 that

the environment is in but reports to us only the mixed state σ and then after the measurement the

person knows which state |fαj〉 the environment ends up in. In other words he or she know the the

result αj of the fine grained measurement in the basis |fαj〉, but reports to us only the subspace

Sα corresponding to the result α. The post measurement state ascribed by this agency to Q is

ραjk =
AαjkρA

†
αjk

pαjk
= Aαjk(ρ),

with

pαjk = tr
(
Aαjk(ρ)

)
= tr(ρA†

αjkAαjk),

being the probability associated with the initial state k and the measurement result αj. Knowing

the value of α but not knowing j or k we assign a post measurement state that averages over these

indices. Given α we have

ρα =
∑
j,k

pjk|αραjk.

Using Bayes theorem, we have

pjk|α =
pαjk
pα

.

So we have

ρα =
1

pα

∑
j,k

pαjkραjk =
1

pα

∑
j,k

AαjkρA
†
αjk =

1

pα
Aα(ρ),
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where

pα =
∑
j,k

pαjk = tr
(
ρ
∑
j,k

A†
αjkAαjk

)
Note that even if the conditional and joint probabilities enter the discussion when we are trying to

relate the post measurement states of the two agencies, everything about the probabilities disappear

from the operations themselves. To construct the operation corresponding to the coarse grained

data we just sum over the the fine-grained data that we do not have:

Aα =
∑
j,k

Aαjk.

Although there is a physical difference between the two kinds of potentially available fine-grained

information symbolized by the indices j and k, there is no mathematical difference between them,

so we can combine them into a single index j in future discussions.
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