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Dynamical maps

We now look at the most general dynamics possible for a quantum system which would included

as special cases all the dynamics and transformations we have seen so far including unitary dynam-

ics, measurement models etc. This gives us an abstract characterization of quantum operations in

the same spirit as as we had done when we generalized projective measurements into POVMs.

We want to describe general quantum dynamics which has as input a quantum system Q in an

input state ρ and that can produce one of many possible outputs labelled by α. Given an input

ρ the outcome α happens with probability pα|ρ, and the state of the system Q conditioned on the

outcome α is ρα. Let us consider a map Aα, not assumed to be linear, that takes in the state ρ

and outputs ρα with the correct probability pα|ρ in a manner familiar to us:

pα|ρ = tr
(
Aα(ρ)

)
and ρα =

Aα(ρ)

pα|ρ
.

This kind of map is trace decreasing since Aα(ρ) has trace less than one. If there is only one

outcome which happens with probability one, then we can forget about the index α and write the

output state as

ρ′ = A(ρ).

This sort of map is trace preserving. We now argue that Aα has to be convex linear; i.e.

Aα
(
λρ1 + (1− λ)ρ2

)
= λAα(ρ1) + (1− λ)Aα(ρ2), 0 ≤ λ ≤ 1.

The argument proceeds in two stages. First we argue that the traces of both sides of the equation

above has to be equal before arguing that the equation above itself has to be true. Imagine that

the input state is ρ1 with probability p1 and it is ρ2 with probability p2. Thus the input state is a

mixture,

ρ = p1ρ1 + p2ρ2.

The probability for the outcome α can be written in two ways. One is just the definition of the

map and all we do is to let in act on the mixed initial state:

pα|ρ = tr
[
Aα(ρ)

]
= tr

[
Aα(p1ρ1 + p2ρ2)

]
.

The second way of writing the probability comes from the rules of probability theory:

pα|ρ = p1pα|ρ1 + p2pα|ρ2 = p1 tr
[
Aα(ρ1)

]
+ p2

[
Aα(ρ2)

]
.
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Equating the two expressions for pα|ρ we get that the trace of both sides of the convex linearity

condition we wrote above have to the equal:

tr
[
Aα(p1ρ1 + p2ρ2)

]
= p1 tr

[
Aα(ρ1)

]
+ p2

[
Aα(ρ2)

]
.

We get the full condition for convex linearity by writing the output state ρα in two different ways

in a similar manner. The first ways is to say that is we do not know which one of the two the

initial state is, we apply the dynamics to the input mixed state and compute the output state:

ρα =
Aα(ρ)

pα|ρ
=
Aα(p1ρ1 + p2ρ2)

pα|ρ
.

What we have is mixing first, followed by dynamics.

The second way of writing the output state comes from arguing that the mixing can follow the

dynamics and we should get the same result. On the two possible input states, we get the outputs

Aα(ρ1)

pα|ρ1
and

Aα(ρ2)

pα|ρ2
.

We should be able to mix these outputs and we should get the same output state as the map acting

on the mixed initial state since in both cases what is happening is that we are not aware of which

one of two possible states the system is in (both initially and finally). We cannot use the same

input probabilities p1 and p2 to mix the outputs because at this point we know something more

about the system in that we know that the outcome α has happened. So we have to update the

mixing probabilities to pρ1|α and pρ2|α. So we have the second way of writing ρα as

ρα = pρ1|α
Aα(ρ1)

pα|ρ1
+ pρ2|α

Aα(ρ2)

pα|ρ2
.

The updated probabilities comes from Bayes theorem:

pρj ,α = pρj |αpα = pρj |αpα|ρ = pα|ρjpρj = pα|ρjpj .

So we have

pρ1|α =
pα|ρ1p1

pα|ρ
and pρ2|α =

pα|ρ2p2

pα|ρ
.

Using these updated probabilities in the second way of writing ρα we get

ρα =
1

pα|ρ

[
p1Aα(ρ1) + p2Aα(ρ2)

]
.

Equating the two expressions for the final state we get the convex linearity of the map.

The convex linearity lets us extend the map to the set of all operators, since all density operators

can be written as convex linear combinations of the extremal states.

So far we have three conditions for our map A (we drop the index α since it is not pertinent to

our discussions any more)

• Condition 1: A is a map from trace-one positive operators (density operators) to positive

operators.
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• Conditions 2: A is trace decreasing. i.e. tr(A(ρ)) ≤ 1 for all density operators ρ. Trace

preserving dynamics is a special case.

• Condition 3: A is convex linear:

Aα
(
λρ1 + (1− λ)ρ2

)
= λAα(ρ1) + (1− λ)Aα(ρ2), 0 ≤ λ ≤ 1.

This lets us extend A to a super operator (an operator on all operators).

It is very easy to show that any map with a Kraus decomposition

A(ρ) =
∑
j

AjρA
†
j ,

satisfies the three conditions above. However these three conditions are not sufficient to characterize

a quantum operation. For instance consider the Transpose super operator T which outputs the

transpose of the input state with respect to some basis set {|ek〉}:

T(ρ) =
∑
j,k

ρkj |ej〉〈ek| ⇔ T =
∑
j,k

|ej〉〈ek| � |ej〉〈ej |.

We have used the “odor” symbol � as a placeholder to indicate the position where the state on

which the super operator acts on. This placeholder lets us talk in the abstract about the map

without specifying the state its acts on. It turns out that T is not a quantum operation because

it takes positive operators to those that are not positive. This means that we need an additional

condition on the maps to make them quantum operations. We will discuss this additional condition

first before showing that T indeed is not a valid operation even though it stands for physically useful

transformations like time reversal.

The additional condition can be motivated physically in the following way. Suppose that R is a

“reference system” that, though it does not itself take part in the dynamics, cannot be neglected

because the initial state ρ of Q is the marginal density operator of a joint state ρRQ. This certainly

being one of the ways to get a density operator for Q, we can’t avoid thinking about this situation.

We want the map 11R ⊗ A where 11R is the unit superoperator acting on R, to be a suitable

quantum dynamics, which means that it must take joint states ρRQ to positive operators, which

can be normalized to be output density operators. This requirement holds trivially for a quantum

operation, because the operators 11R ⊗Aj are a Kraus decomposition for the extended operation

(11R ⊗A)(ρRQ) =
∑
j

(11R ⊗Aj)ρRQ(11R ⊗Aj)† ≥ 0.

Thus we can add an additional requirement, which strengthens condition 1, to our list of conditions

for a map to describe a quantum dynamics:

• Condition 4: (11R ⊗ A)(ρRQ) ≥ 0 for all joint density operators ρRQ of Q and reference

systems R of arbitrary dimension. Such a map is said to be completely positive.
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Our objective now is to show that any map that satisfies conditions 1 through 4 is a quantum

operation. Before turning to that task, however, let us first see what goes wrong with an apparently

satisfactory map like the transposition superoperator. We want to consider the map 11R⊗T , which

is called the partial transposition superoperator, because it transposes matrix elements in system

Q only. Let us suppose R has the same dimension as Q, and let us apply the partial transposition

superoperator to an (unnormalized) maximally entangled state

|Ψ〉 =
∑
j

|fj , ej〉,

where |fj〉 form an orthonormal basis for R and the vectors |ej〉 form an orthonormal basis for Q.

Partially transposing Q gives

11R ⊗ T(|Ψ〉〈Ψ|) = 11R ⊗ T
(∑
j,k

|fj〉〈fk| ⊗ |ej〉〈ek|
)

=
∑
j,k

11R(|fj〉〈fk|)⊗ T(|ej〉〈ek|)

=
∑
j,k

|fj〉〈fk| ⊗ |ek〉〈ej |

=
∑
j,k

|fj , ek〉〈fk, ej |.

It is easy to see that the normalized eigenvectors for the 11R ⊗T operator are the states |fj , ej〉 for

j = 1, . . . , D and the states

1√
2

(|fj , ek〉 ± |fk, ej〉),

for all pairs of indices. The states |fj , ej〉 have eigenvalues +1 but the remaining states have

eigenvalue ±1 showing that the operator is not positive (it is actually unitary). This shows that T
cannot have a Kraus decomposition.

This example suggests that the problem with superoperators that are positive, but not com-

pletely positive is that, when extended to R, they don’t map all entangled states to positive

operators, as we would like them to. Indeed, as we now show, the general requirements for com-

plete positivity follow from considering only one kind of reference system, one whose dimension is

the same as the dimension of Q, and only one kind of joint state, the maximally entangled state.

All we need to consider is how the extended map 11R⊗T acts on |Ψ〉〈Ψ|, i.e., the following operator

on RQ:

11R ⊗A(|Ψ〉〈Ψ|).

It can be shown (we will not work through the proof here) that completely positive superoper-

ators that satisfy the four conditions that we laid out, has a Kraus decomposition of the form

A =
∑
α

Aα �A†
α.
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We can show (using Kraus decomposition theorem) that any quantum operation has a Kraus

decomposition with no more than D2 Kraus operators. We also can show that two sets of Kraus

operators {Aα} and {Bα} give rise to the same completely positive superoperator if an only if they

are related by a unitary matrix Vαβ, i.e.,

Bβ =
∑
α

VαβAα.

An example will show the importance of this decomposition theorem. Consider a von Neumann

measurement in the basis |ej〉. If we forget the result of the measurement, the trace-preserving

operation that describes the process is

A =
D∑
j=1

|ej〉〈ej | � |ej〉〈ej | =
∑
j

Pj � Pj .

This operation corresponds to writing the input density operator in the basis |ej〉 and then setting

all the off-diagonal terms to zero. Physically, it is the ultimate decoherence process: it wipes out

all the coherence in the basis |ej〉 and replaces the input state with the corresponding incoherent

mixture of the basis states |ej〉〈ej |. Though it would seem to have nothing to do with unitary

evolutions, we can nonetheless write this operation as a mixture (convex combination) of unitary

operators. If we transform the projectors Pj using the unitary matrix

Vkj =
1√
D
e2πikj/D,

we get new Kraus operators,

1√
D
Uk =

∑
j

VkjPj =
1√
D

∑
j

e2πikj/D|ej〉〈ej |,

The operators Uk are clearly unitary written in their eigen decomposition with phases as eigenval-

ues. The operation becomes

A =
1

D

D∑
k=1

Uk � U †
k .

Thinking in terms of this Kraus decomposition, A describes a process where one chooses one of the

D unitaries out of a hat and applies it to the system, not knowing which unitary has been chosen

- all have equal probability 1/D.
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