
PHY 4105: Quantum Information Theory

Lecture 2

Anil Shaji

School of Physics, IISER Thiruvananthapuram

(Dated: August 6, 2013)

A. Laws of large numbers

The ability to estimate the probabilities p(x) for a random variable taken on each of its allowed

values depend on the various forms of the laws of large numbers. It tells you how the probability

vector - whether it is an artifact of your mind or otherwise - can take shape based on a finite

number of observational data on events, atomic or otherwise. Take care not to confuse laws of

large numbers with the central limit theorem, which in many cases end up saying the same thing.

In particular the weak law says that the mean taken over several instances of a random variable

will converge to the expected value. It guarantees stable averages even for random events.

Chebyshev inequality: For any non-negative random variable X with finite mean,

P (x > a) ≤ 〈x〉
a
.

Proof

P (x > a) =

∫ ∞
a

dx p(x) ≤
∫ ∞
a

dx
x

a
p(x) ≤

∫ ∞
0

dx
x

a
p(x) =

〈x〉
a
.

For a random variable X with a finite mean and variance

P (|x− 〈x〉| > a) = P ((x− 〈x〉)2 > a2) ≤ 〈(∆x)2〉
a2

,

where the variance of X is

〈(∆x)2〉 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2.

Let us consider N tosses of a six sided die. Each toss may be considered as a random variable,

Xj which takes values 1 through 6. Alternatively one can think of N identical dies being tossed

and the results of each being taken as random variable. What matters is that in both cases, the

probability distribution for the outcomes is identical, either from trial to trial or from die to die as

the case may be. Implicit in this statement is the fact that the next toss of the die does not depend

on the previous one or the toss of one die does not depend on the other ones as the case may be.

In other words X1, X2, . . . , XN are Independent, Identically Distributed (iid) random variables.

Furthermore let these random variables have a finite mean 〈x〉 and finite variance 〈(∆x)2〉.
We can define the a new variable; the sample mean,

S =
1

N

N∑
j=1

Xj .
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The sample mean has mean,

〈s〉 =
1

N

N∑
j=1

〈Xl〉 = 〈x〉,

and second moment

〈s2〉 =
1

N2

∑
j,k

〈XjXk〉 = 〈x〉2 +
1

N
〈(∆x)2〉,

using ∑
jk

〈XjXk〉 = 〈(〈x〉+ ∆Xj)(〈x〉+ ∆Xk)〉 = 〈x〉2 + 〈∆Xj∆Xk〉 = 〈x〉2 + δjk〈(∆x)2〉.

So the variance of the sample mean is

〈(∆s)2〉 = 〈s2〉 − 〈s〉2 =
1

N
〈(∆x)2〉.

This is the first form of the weak law of large numbers that we are going to learn.

A different form for the weak law is

lim
N→∞

P (|SN − 〈x〉| ≤ ε) = 1 for any ε > 0.

The central limit theorem tells you a bit more than what the weak law of large numbers does.

It tells you not only the mean and the variance of the sample mean but it tells that the sample

mean is a random variable distributed according to the Normal distribution. Let us push things a

bit forward and ask how the measured frequencies fi = ni/N obtained from the number of times

ni that a random variable X took on a value xi out of N trials are connected to the probabilities Pi

associated with that outcome. Let the possible values taken by the random variables X be labeled

x1, x2, . . . , xD. In N trials we get a sequence X1, . . . XN of the D possible outcomes in which the

value xj occurs nj times, xk occurs nk times and so on. We have

N∑
j=1

nj = N.

Since we are worried about the frequencies fj = nj/N of the occurrence of each of the D values,

let us look at the probability that the sequence we obtain has occurrence numbers n1, . . . , nD:

p(n1, . . . , nD) =
N !

n1! · · ·nD!
pn1
1 · · · p

nD
D .

Normalization of the probability distribution means that∑
n1,...nD

p(n1, . . . , nD) = (p1 + · · ·+ pD)N = 1.

The mean values of the occurrence number can be computed as

〈nj〉 =
∑

n1,...nD

njp(n1, . . . , nD) = pj
∂

∂pj

( ∑
n1,...nD

p(n1, . . . , nD)
)

= Npj .
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Similarly for the second moment matrix,

〈njnk〉 =
∑

n1,...nD

njnkp(n1, . . . , nD)

= pj
∂

∂pj

(
pk

∂

∂pk

( ∑
n1,...nD

p(n1, . . . , nD)
))

= pj
∂

∂pj

(
Npk(p1 + . . .+ pD)N−1

)
= Npjδjk(p1 + . . .+ pD)N−1 +N(N − 1)pjpk(p1 + . . .+ pD)N−2

= N2pjpk +N(pjδjk − pjpk).

The correlation matrix:

〈∆nj∆nk〉 = 〈(nj − 〈nj〉)(nk − 〈nk〉)〉

= 〈njnk〉 − 〈nj〉〈nk〉

= N(pjδjk − pjpk).

So the variances are

〈(∆nj)2〉 = Npj(1− pj).

Now looking at the frequency of occurrence of each alternative, fj = nj/N ,

〈fj〉 =
〈nj〉
N

= pj ,

〈∆fj∆fk〉 =
1

N
(pjδjk − pjpk),

〈(∆fj)2〉 =
1

N
pj(1− pj).

So we have a third form of the weak law of large numbers,

P (|fj − pj | ≤ ε, j = 1, . . . , D) ≥ 1−
1−

∑D
j=1 p

2
j

Nε2
.

The probability that all the frequencies lie within ε of the corresponding probability is now bounded

by the expression on the right side of the above inequality. This form of the weak law says that

lim
N→∞

P (|fj − pj | ≤ ε, j = 1, . . . , D) = 1,

for any ε > 0.

Proof

P (|fj − pj | ≤ ε, j = 1, . . . , D) ≥ P (
∑
j

(fj − pj)2 ≤ ε2)

= 1− P (
∑
j

(fj − pj)2 > ε2)

≥ 1−
∑

j〈(∆fj)2〉
ε2

=
1−

∑
j p

2
j

Nε2
.
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The last inequality comes form Chebyshev inequality.

The strong law of large numbers deals directly with limits of a sequence of frequencies and is

stated in the form

P ( lim
N→∞

f
(N)
j = pj) = 1,

while the weak laws refer to a limit of a sequence of probabilities (see the third form above).

Typically we are interested in limits of probabilities and so we are interested in the weak laws and

not on the strong laws.
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