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A. Classical information theory

A sequence is ε-typical if ∣∣∣∣− 1

N
log p(x1, . . . xN )−H(~p)

∣∣∣∣ ≤ ε.
Equivalently

2−N(H(~p)+ε) ≤ p(x1, . . . , xN ) ≤ 2−N(H(~p)−ε).

We denote the set of all ε-typical sequences by T (N, ε).

Now consider the variable

S ≡ − 1

N
log p(x1, . . . , xN ) =

1

N

N∑
l=1

− log p(xl).

We can think of this variable as the sample mean of − log p(x). The mean of S is

〈s〉 =
1

N

N∑
l=1

(
−

∑
x1,...xN

p(x1) · · · p(xN ) log p(xl)

)
=

1

N
N(−

∑
xj

p(xj) log p(xj)) = H(~p).

and

〈(∆s)2〉 =
1

N
〈(∆(− log p(x)))2〉 =

1

N

∑
x

p(x)
(
− log p(x)−H(~p)

)2
.

The asymptotic equipartition theorem or Typical sequences theorem

(i) For any ε, δ > 0, there exists N0 such that for all N > N0, the probability that a sequence

is ε-typical is ≥ 1− δ
Proof:

p

(∣∣∣∣− 1

N
log p(x1, . . . , xN )−H(~p)

∣∣∣∣ ≤ ε) = 1− p
(∣∣∣∣− 1

N
log p(x1, . . . , xN )−H(~p)

∣∣∣∣ > ε

)
≤ 1− 〈(∆(− log p(x)))2〉

Nε2
,

The inequality coming from the weak law of large numbers of the form,

p(|s− 〈x〉| > ε) ≤ 〈(∆s)
2〉

ε2
=
〈(∆x)2〉
Nε2

,
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We choose

N0 =
〈(∆(− log p(x)))2〉

δε2
,

so that

p

(∣∣∣∣− 1

N
log p(x1, . . . , xN )−H(~p)

∣∣∣∣ ≤ ε) ≥ 1− δ.

(ii) The number of ε-typical sequences, [T (N, ε)], satisfies

(1− δ)2N(H(~p)−ε) ≤ [T (N, ε)] ≤ 2N(H(~p)+ε), N ≥ N0.

Proof:

1 ≥
∑

ε-typical sequences

p(x1, . . . , xN )

≥ [T (N,E)] min p(x1, . . . , xN ) = [T (N,E)]2−N(H(~p)+ε)

⇒ [T (N,E)] ≤ 2N(H(~p)+ε).

1− δ ≤
∑

ε-typical sequences

p(x1, . . . , xN )

≤ [T (N,E)] max p(x1, . . . , xN ) = [T (N,E)]2−N(H(~p)−ε)

⇒ [T (N,E)] ≥ (1− δ)2N(H(~p)−ε).

(iii) Let SN be any set of sequences of length N , containing at most 2NR sequences, where

R < H(~p). Given any δ > 0 , there exists N0 such that for all N ≥ N0,∑
x1,...xN∈SN

p(x1, . . . , xN ) ≤ δ.

Proof: Let ε < H(~p) − R. For part (i), choose δ′ = δ/2 with corresponding N ′0 (= 2N0).

Now ∑
x∈SN

p(x) =
∑

ε−typ,x∈SN

p(x) +
∑

ε−atyp,x∈SN

p(x).

For N ≥ N ′0, we have ∑
ε−typ,x∈SN

p(x) ≤ 2NR2−N(H(~p)−ε) = 2−N(H(~p)−R−ε)

and ∑
ε−atyp,x∈SN

p(x) ≤
∑
ε−atop

p(x) = 1−
∑
ε−typ

p(x) ≤ δ

2
,

the last inequality following from (i). So we have∑
x∈SN

p(x) ≤ 2−N(H(~p)−R−ε) +
δ

2
.
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Choose N0 ≥ N ′0 such that 2−N(H(~p)−R−ε) ≤ δ/2 so that∑
x∈SN

p(x) ≤ δ.

Shannon’s noiseless coding theorem: The theorem is essentially a re-phrasing of the typical

sequences theorem as applied to data compression. The theorem may be stated as:

N i.i.d. random variables each with entropy H(X) can be compressed into more

than NH(X) bits with negligible risk of information loss, as N tends to infinity; but

conversely, if they are compressed into fewer than NH(X) bits it is virtually certain

that information will be lost.

In other words it says that typical sequences can be coded into a block code of “rate” H(~p), but

not smaller.

The Shannon Entropy

The Shannon entropy or Shannon information we have seen, is defined as

H(~p) = −
∑
i

pi log pi = −
∑
x

p(x) log p(x) ≡ H(X).

Since we extensively deal with bits and qubits, a particular instance of the Shannon entropy that

shows up frequently is the binary entropy,

H2(x) = −x log x− (1− x) log(1− x).

The graph of the function is plotted below in Fig. 1:

FIG. 1: The binary entropy function H2

Note that H2(x) = H2(1− x). Let us now list a few properties of H(X)

1. 0 ≤ H(x) ≤ logD, where D is the number of alternatives (dimension) for the random

variable X.
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2. We can define a relative entropy or the Kullback-Liebler distance between two probability

distributions ~p and ~q as

H(~p‖~q) ≡
∑
x

p(x)

(
− log

p(x)

q(x)

)
= −H(~p)−

∑
x

p(x) log q(x) ≥ 0.

We can use the convexity of the − log function to prove the last inequality:

H(~p‖~q) =
∑
x

p(x)

(
− log

p(x)

q(x)

)
≥ − log

(∑
x

p(x)
q(x)

p(x)

)
= 0.

In the above we have used Jensen’s inequality which states that for a concave function f(x),

〈f(x)〉 =
∑
x

p(x)f(x) ≤ f
(∑

x

p(x)x
)

= f(〈x〉),

and for a convex function f(x)

〈f(x)〉 =
∑
x

p(x)f(x) ≥ f
(∑

x

p(x)x
)

= f(〈x〉).

These inequalities follow in a simple manner from the definition of concave and convex

functions as

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2) (Concave)

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) (Convex).

Jensen’s inequality is a way of writing these definitions in terms of averages.

From the positivity of the relative entropy we can show that

0 ≤ H(~p‖~q) = −H(~p) +
∑
x

p(x) log q(x) = −H(~p) + logD,

when q(x) = 1/D is uniformly distributed. Then

H(~p) = H(X) ≤ logD.

3. Concavity of the Shannon entropy:

H(λ~p+ (1− λ)~q) ≥ λH(~p) + (1− λ)H(~q).

This means that mixing two probability distributions increases the entropy. We have equality

when either λ = 0 or ~q = ~p.

Proof:

H(λ~p+ (1− λ)~q) =
∑
x

−(λp(x) + (1− λ)q(x)) log(λp(x) + (1− λ)q(x))

≥ −λp(x) log(λp(x))− (1− λ) log((1− λ)q(x))

≥ −λp(x) log p(x)− (1− λ)q(x) log q(x)

≥ λH(~p) + (1− λH(~q)).
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