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Mixed states

So far we have been talking about pure quantum states which are represented by rays in Hilbert

space of the form

|ψ〉 =
∑
i

ci|ei〉 =
∑
i

〈ei|ψ〉|ei〉,
∑
i

|ci|2 = 1.

Measurement in the basis |ej〉 gives

pk = |〈ek|ψ〉|2 = 〈ψ|Pk|ψ〉 = 〈ek|Pψ|ek〉.

In many situations we might have a collection (ensemble) of identical quantum systems for which

we know that with a probability qj the system is in the state |ψj〉. From measurements on the

ensemble, the probability that we find the system in the state |ek〉 is pk =
∑

j pk|jqj , with

pk|j = |〈ek|ψj〉|2 = 〈ek|ψ〉〈ψ|ek〉.

So we have

pk =
∑
j

qj〈ek|ψ〉〈ψ|ek〉 = 〈ek|
(∑

j

qj |ψ〉〈ψ|
)
|ek〉.

We can represent the state of the system by a density operator,

ρ =
∑
j

qj |ψj〉〈ψj |.

The set {qj , |ψj〉} is an ensemble decomposition of the state ρ. In terms of the density operator,

pk = tr(ρ|ek〉〈ek|).

For an observable A =
∑

k λk|ek〉〈ek|, we have

〈A〉 =
∑
k

λkpk = tr(ρA).

A density operator is a Hermitian operator with non-negative eigenvalues that sum to 1 ( trρ = 1).

Before discussing the properties of density matrices, let us go back to a few things that we

had left out when we discussed operators on D dimensional Hilbert spaces. The operators on a D

dimensional Hilbert space H for a D2 dimensional complex vector space LH, with inner product

(A, B) ≡ tr(A†B).
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An orthonormal basis for LH is given by the operators τjk = |ej〉〈ek. We have

tr(τ †lmτjk) = tr(|em〉〈el|ej〉〈ek|) = δjkδkm.

An arbitrary operator can be expanded in this basis as

A =
∑
jk

Ajk|ej〉〈ek| =
∑
jk

Ajkτjk.

An alternate, non-orthogonal basis for LH is given by the set of all 1D projectors (pure states) |ψ〉.
A specific orthonormal set of 1D projectors can be chosen as the basis as follows:

|φα〉 =


j = 1, . . . , D |ej〉〈ej | = τjj

j < k; |χjk〉〈χjk| = 1
2(τjj + τkk + τjk + τkj)

|ξjk〉〈ξjk| = 1
2(τjj + τkk − iτjk + iτkj),

where

|χjk〉 =
1√
2

(|ej〉+ |ek〉)

|ξjk〉 =
1√
2

(|ej〉+ i|ek〉).

So an operator A is specified by the inner products

(|φα〉〈φα|, A) = tr(|φα〉〈φα|A) = 〈φα|A|φα〉.

An operator is over-specified if we give its sandwiches 〈ψ|A|ψ〉 with all the pure states. An operator

is Hermitian if all 〈ψ|A|ψ〉 are real.

A positive operator G is one for which 〈ψ|G|ψ〉 is real and non-negative for all |ψ〉. The positivity

condition is denoted as G ≥ 0. An operator G is positive if an only if it is Hermitian with non-

negative eigenvalues. Two positive operators G1 and G2 are orthogonal ( tr(G1G2) = 0) if an only

if G1G2 = 0.

Positive operators have square roots:

√
G =

∑
j

√
λ|ej〉〈ej |.

An operator is positive definite (G > 0) if 〈ψ|G|ψ〉 > 0 for all |ψ〉. Positive definite operators are

Hermitian with positive eigenvalues and they are invertible.

An operator ρ is a density operator if and only if ρ ≥ 0 and tr(ρ) = 1. A pure state density

operator is a rank 1 projector, ρ = |ψ〉〈ψ|. A unit trace Hermitian operator is ρ is a pure state

density matrix if and only if ρ2 = ρ (A projector has to be Hermitian but not necessarily unit

trace). Alternatively, a density operator ρ represents a pure state if and only if tr(ρ2) = 1.

Now let us turn our attention from the vector space of operators LH to the set (not vector

space) of density operators. To do that we have to look at what a convex set is. A set S is convex

if for any v1, v2 ∈ S,

λv1 + (1− λ)v2 ∈ S.
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Or in general, ∑
j

λjvj ∈ S,
∑
j

λj = 1 and λj ≥ 0.

An extreme point of a convex set S is a point that cannot be written as a proper (0 < λ < 1)

convex combination of any other points. If S is closed and bounded then every point in S can be

written as a convex combination of the extreme points. A simplex is a special type of convex set

for which every point can be written uniquely in terms of the extreme points of the set. The set

of probability distributions on a random variable form a simplex.

The density operators are a closed and bounded convex set whose extreme points are the pure

states.

For qubit density operators, we start with the general decomposition,

ρ = A011 + ~A ·~(σ) = (A0 + | ~A|)|~n〉〈~n|+ (A0 − | ~A|)| − ~n〉〈−~n|.

The second equality above follows from the fact that ρ has to be Hermitian and hence A0 and ~A

are real. We also have A0 = 1/2 from the trace condition on ρ since tr(ρ) = 2A0 from the equation

above. Finally positivity of ρ means that | ~A| ≤ 1 because otherwise the second eigenvalue of ρ,

A0 − | ~A| will be negative. So we have

ρ =
1

2
(11 + ~S · ~σ), |~S| ≤ 1.

The vector ~S is the Bloch vector describing the state. Now its length can be less than one also.

Which means that if we consider all the states of a qubit, including mixed state, we find that they

are represented by points on the surface and within the Bloch sphere (Bloch ball).

In the Bloch sphere, pure states are on the surface while mixed states are represented by points

inside. In higher dimensions, mixed states form a (d2 − 1) dimensional manifold while pure states

are a 2(d− 1) dimensional surface.

Consider a mixed state with Bloch vector ~S. We have seen ensemble decomposition of mixed

states as

ρ =
∑
j

qj |ψj〉〈ψj |, |ψj〉 =
1

2
(11 + ~nj · ~σ).

Any set of states |ψj〉 such that ~S =
∑

j qj~nj will furnish an ensemble decomposition of the mixed

state. This means that the decomposition of a mixed state into an ensemble of pure states is not

unique. This means that the space of density operators is not a simplex.

A special ensemble decomposition of the density matrix is one that makes it diagonal. This is

furnished by the eigenvectors of ρ as

ρ =
∑
j

λj |ej〉〈ej |.

The support of ρ is subspace of Hilbert space spanned by the eigenvectors of ρ corresponding to

the non-zero eigenvalues of ρ. The null-space of ρ is the subspace spanned by the eigenvectors
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corresponding to zero eigenvalues. These subspaces are orthogonal to each other. A subspace that

is orthogonal to another subspace S is called the orthocomplement of S. The projectors on to the

support and null-space of ρ are respectively

PS =
∑
λj 6=0

|ej〉〈ej |, PN =
∑
λj=0

|ej〉〈ej |.

The number of non-zero eigenvalues of ρ is called the rank of the density matrix. If we consider an

ensemble decomposition of ρ given by {qj , |ψj〉 then it is clear that all |ψj〉 must be Hilbert space

vectors that lie in the support of ρ.

1. The Hughston, Jozsa, and Wootters (HJW) theorem originally discovered by Schrödinger

For the purposes of stating and proving the theorem we will denote an ensemble decomposition

{qj , |ψj〉} of a density operator ρ as {|ψ̄j〉} by absorbing
√
qj into |ψj〉 so that

ρ =
∑
j

|ψ̄j〉〈ψ̄j |.

Theorem: Two ensemble decomposition {|ψ̄α〉} and {|φ̄α〉} correspond to the same density oper-

ator if and only if there exists a unitary operator Uαβ such that

|φ̄α〉 = Uαβ|ψ̄β〉.

Note that if one ensemble decomposition has fewer elements than the other, one can always pad

the shorter one with zero vectors so that Uαβ is well defined.

Proof: ∑
α

|φ̄α〉〈φ̄α| =
∑
α,βγ

Uαβ|ψ̄β〉〈ψ̄γ |U∗αγ =
∑
β,γ

|ψ̄β〉〈ψ̄γ |
∑
α

UαβU
∗
αγ

=
∑
β,γ

|ψ̄β〉〈ψ̄γ | δβγ =
∑
α

|ψ̄α〉〈ψ̄α|.

To prove the reverse let us consider, without loss of generality, one of the two ensemble decompo-

sitions to be the eigen-decomposition of ρ. So we have

ρ =
∑
α

|ψ̄α〉〈ψ̄α| =
∑
|ej〉∈S

|ēj〉〈ēj |.

Since |ψ̄α〉 has support only in S as mentioned earlier, we can expand it as

|ψ̄α〉 =
∑
|ej〉∈S

|ej〉〈ej |ψ̄α〉 =
∑
|ej〉∈S

|ēj〉
〈ej |ψ̄α〉√

λj
, define Mαj =

〈ej |ψ̄α〉√
λj

Now we have to show that Mαj is unitary. So∑
α

MαjM
∗
αk = 〈ej |

∑
α |ψ̄α〉〈ψ̄α|√
λjλk

|ek〉 =
1√
λjλk

〈ej |ρ|ek〉 =
1√
λjλk

λkδjk = δjk.

Note that Mαj is an N×R matrix where N is the number of elements in the ensemble decomposition

and R is rank of ρ but M can be extended to be an unitary by adding zeros.
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