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Multiple quantum systems

Consider two quantum systems. System A has a dA dimensional Hilbert space while system

B has a dB dimensional Hilbert space. What is the dimension and nature of the state space of

the composite system AB? In the composite state space there must be elements corresponding to

the situation where A is in a pure state |ψ〉 and B is in another pure state |φ〉. We denote the

composite state as

|ψ〉 ⊗ |φ〉,

and call such a state a product state. The symbol ⊗ (read as “o-times”) for the time being is just

a separator that distinguishes the state of A from the state of B. In general we can take arbitrary

vectors from the Hilbert space HA of A and the Hilbert space HB of B, irrespective of whether

they are normalized or not and construct composite states as above. The set of all such ordered

pairs of one vector from HA and another from HB (set of all product states) is called the cartesian

product of HA and HB. This set does not form a vector space.

If |ψ〉 is itself a superposition, |ψ〉 = a|χ〉+ b|ξ〉, then we can certainly write

|ψ〉 ⊗ |φ〉 = (a|χ〉+ b|ξ〉)⊗ |φ〉 = a|χ〉 ⊗ |φ〉+ b|ξ〉 ⊗ |φ〉.

The last equality means that when we say A is a superposition while B is in the state |φ〉 then

that is also equivalent to superposing the two composite states |χ〉 ⊗ |φ〉 and |ξ〉 ⊗ |φ〉. We can say

something similar when B is a superposition also but this rather innocuous statement has rather

far reaching consequences including mandating the phenomena of quantum entanglement.

As we mentioned earlier, it is easy to see that the cartesian product space is not a vector space

because arbitrary superpositions of the kind

a|ψ〉 ⊗ |φ〉+ b|χ〉 ⊗ |ζ〉,

are not product vectors. We have seen before that quantum systems are in general described by

vectors in complex vector spaces. This is the mathematical statement of the principle of super-

position. In accordance with this principle, the appropriate state space for composite systems is

not the cartesian product space of pure states of the component systems but rather it is the entire

complex vector space spanned by the cartesian product states. Once we make this assignment then

we see that composite (pure) states like the one above which are not product states are allowed

ones and precisely these states are the entangled ones.



2

The state space of the composite system is the tensor product of HA and HB, denoted as

HAB = HA ⊗HB.

The symbol ⊗ is from now on called the tensor product. The inner product on the tensor product

space is defined by defining the inner product of two product states as

(〈ψ| ⊗ 〈φ|)(|χ〉 ⊗ |ζ〉) = 〈ψ|χ〉〈φ|ζ〉,

and extending this definition to all vectors in HAB using the complex bi-linearity of the inner

product.

Any vector |Ψ〉 in HAB can be written as superposition of product states. In particular all

the vectors in the product can be expanded in terms of basis vectors |ej〉 for HA and |fk〉 for

HB, and the bi-linearity of the tensor product can be used to write |Ψ〉 as a linear combination

of orthonormal product vectors |ej〉 ⊗ |fk〉 showing that these vectors form a basis for HAB. The

number of such vectors is dAdB showing that the dimension of the tensor product space is the

product of the dimensions of the component spaces. We often do not write the tensor product

symbol explicitly and may denote the basis vectors of HAB using any one of the following forms,

|ej〉 ⊗ |fk〉 = |ej〉|fk〉 = |ej , fk〉 = |j, k〉 = |jk〉.

The expansion of an arbitrary vector in HAB looks like

|Ψ〉 =
∑
jk

|ej , fk〉〈ejfk|Ψ〉 =
∑
jk

cjk|ej , fk〉.

As we had done previously for states of single systems, the expansion coefficients cjk = 〈ej , fk|Ψ〉
can be written as a column vector (matrix representation in a particular basis):

|Ψ〉 =



c11
...

c1dB
c21
...

c2dB
...

cdA1

...

cdAdB



=


~c1
...

~cdA

 .

In the second form we have group together the coefficients into dB dimensional vectors of the form

~cj =


cj1
...

cjdB

 ,
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which is also equivalent to writing

|Ψ〉 =
∑
j

|ej〉 ⊗
(∑

k

cjk|fk〉
)
.

For a product vector the expansion coefficients cjk are the outer product of the expansion coefficients

for |ψ〉 =
∑

j aj |ej〉 and |φ〉 =
∑

j bk|fk〉:

cjk = 〈ej , fk|(|ψ〉 ⊗ |φ〉) = 〈ej |ψ〉〈fk||φ〉 = ajbk, ~cj = aj


b1
...

bdB

 .

We can now think of a “partial inner product” 〈φB|ΨAB〉. It is that ket in HA whose inner

product with any vector |ψA〉 in HA is the same as the inner product of 〈ψA| ⊗ 〈φB| with |ΨAB〉,
i.e.,

〈ψA|(〈φB|ΨAB〉) = (〈ψA| ⊗ 〈φB|)|ΨAB〉.

Explicitly in the product basis we have

〈φB|ΨAB〉 =
∑
jk

cjk|ej〉〈φB|fk〉 =
∑
j

|ej〉
(∑

k

b∗kcjk

)
.

For a product state, the partial inner product is

〈φB|ΨAB〉 = 〈φB|(|ψA〉 ⊗ |ξB〉) = |ψA〉〈φB|ξB〉.

We can define a partial inner product with respect to system A as well in an equivalent manner.

1. Operators on tensor product space

The basic operators on the tensor product space HAB are outer products of the form

(|ψ〉 ⊗ |φ〉)(〈χ| ⊗ 〈ξ|) = |ψ〉〈χ| ⊗ |φ〉〈ξ|.

The first form is the standard outer product notation in the tensor product space; we know how

to handle this form since we have already defined the inner product of these kinds of vectors. The

second form just a rearrangement of the vectors and that defines the tensor product of operators.

We get a tensor product of operators on A and B by this rearrangement. This definition is extended

to the product of any two bilinear operators by assuming that the tensor product is bilinear as

well:

A⊗B =
(∑

jl

Ajl|ej〉〈el|
)
⊗
(∑

km

Bkm|fk〉〈fm|
)

=
∑
jklm

AjlBkm|ej〉〈el| ⊗ |fk〉〈|fm

=
∑
jklm

AjlBkm|ej , fk〉〈el, fm|.
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In fact if we know that we are working in tensor product Hilbert space then we really should write

all operators A acting on one of the Hilbert spaces, say HA as

A⊗ 11 =
∑
jlk

Ajl|ej〉〈el| ⊗ |fk〉〈fk| =
∑
jlk

Ajl|ej , fk〉〈el, fk|.

We often ignore this nicety unless the context does not make it clear what we are talking about.

We also have products of tensor product operators as

(A1 ⊗B1)(A2 ⊗B2) = A1A2 ⊗B1B2.

An arbitrary operator O acting on tensor product space can be expanded as

O =
∑
jklm

Ojk,lm|ej , fk〉〈el, fm|.

In matrix notation we get

O =



O11,11 · · · O11,1dB · · · O11,dA1 · · · O11,dAdB
...

. . .
...

. . .
...

. . .
...

O1dB ,11 · · · O1dB ,1dB · · · O1dB ,dA1 · · · O1dB ,dAdB
...

. . .
...

. . .
...

. . .
...

OdA1,11 · · · OdA1,1dB · · · OdA1,dA1 · · · OdA1,dAdB
...

. . .
...

. . .
...

. . .
...

OdAdB ,11 · · · OdAdB ,1dB · · · OdAdB ,dA1 · · · OdAdB ,dAdB


=


O11 · · · O1dA

...
. . .

...

OdA1 · · · OdAdA

 ,

where in the second form we have a matrix of matrices with each Ojl being a (dB × dB) matrix,

Ojl =


Oj1,l1 · · · Oj1,ldB

...
. . .

...

OjdB ,l1 · · · OjdB ,ldB

 .

What we have done is to rewrite O as

O =
∑
jl

|ej〉〈el| ⊗
(∑

km

Ojk,lm|fk〉〈|fm
)
.

Using the partial inner product of tensor product vectors we can define a partial matrix element

of a composite operator O as

〈φB|O|ξB〉 =
∑
jl

|ej〉〈el|
(∑

km

Ojk,lm〈φB|fk〉〈fm|ξB〉
)
,

which is an operator acting on system A. For a tensor product operator

〈φB|A⊗B|ξB〉 = A〈φB|B|ξB〉.

Similarly

〈φB|(A⊗ 11)O|ξB〉 = A〈φB|O|ξB〉, and 〈φB|O(A⊗ 11)|ξB〉 = 〈φB|O|ξB〉A.

In a similar manner we can always define a partial matrix element with respect to system A as

〈ψA|O|χA〉.
We now have all the ingredients in place to talk about the partial trace operation.
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