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Quantum information

To quantify various aspects of the classical information in random variables X and Y taking

values xj and yj respectively with probabilities p(xj) and p(yj) we had defined the following

quantities:

1. Shannon entropy:

H(~p) = H(X) = −
∑
j

p(xj) log p(xj).

The Shannon entropy was connected to out ignorance about the random variable X, we used

it for understanding typical sequences and block coding etc.

2. Relative entropy

H(~p‖~q) =
∑
j

pj log
pj
qj

= −H(~p)−
∑
j

pj log qj ≥ 0.

3. Conditional entropy

H(X|Y ) =
∑
y

p(y)

(
−
∑
x

p(x|y) log p(x|y)

)
= −

∑
x,y

p(x, y) log p(x|y).

4. Mutual information

H(X : Y ) = H(X)−H(X|Y ) = H(X) +H(Y )−H(X,Y ).

The properties of Shannon entropy for two variables is described best by the Venn diagram below:

H(X|Y ) H(X|Y )H(X : Y )

H(A) H(Y )

H(X, Y )
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We can now ask the question how we quantify the quantum information contained in a state

ρ. We can define an analogue of the Shannon entropy as follows. We start with the eigen-

decomposition of the state as

ρ =
∑
j

λj |ej〉〈ej |,

and define the vonNeumann entropy of the state as

S(ρ) = H(~λ) = −
∑
j

λj log λj = −tr(ρ log ρ).

We have the following properties for the vonNeumann entropy:

1. vonNeumann entropy is positive semi-definite,

0 ≤ S(ρ) ≤ logD.

The first inequality is saturated (S(ρ) = 0) for a pure state which means that if we know

that a system is in a particular pure state then there is no further ignorance about it. The

maximally mixed state in D dimensions has the maximal entropy.

2. The ODOP inequality: If we do a complete set of one dimensional projective measurements

on a quantum system yielding results j with probability qj = tr(ρ|fj〉〈fj |), then

H(~q) ≥ H(~λ) = S(ρ).

So a complete set of measurements can put an upper bound on the vonNeumann entropy.

3. Concavity:

S(µρ1 + (1− µ)ρ2) ≥ µS(ρ1) + (1− µ)S(ρ2), 0 < µ < 1.

Analogous to the classical relative entropy, we can define a quantum relative entropy as

S(ρ‖σ) = tr(ρ log ρ)− tr(ρ log σ) = −S(ρ)− tr(ρ log σ).

The relative entropy is like a distance between two density matrices but it is not symmetric.

If we have two systems, we have a joint density matrix ρAB and sub-system (partial trace)

density matrices ρA and ρB. We can define vonNeumann entropies for all there. If ρAB is a pure

state then S(ρAB) = 0 and S(ρA) = S(ρB). We also have subadditivity:

S(A,B) ≤ S(A) + S(B),

with equality when ρAB = ρA ⊗ ρB. There is also a triangle inequality (Araki-Lieb),

S(A,B) ≥ |S(A)− S(B)|.
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We can have quantum conditional entropies defined as

S(A|B) = S(A,B)− S(B), S(B|A) = S(A,B)− S(B).

It is easy to see that the conditional entropies as defined can be negative and so we have to think

a bit harder about what it means to “know” the sub-system. The quantum mutual information,

however, is positive semi-definite

S(A : B) = S(A) + S(B)− S(A,B).

Holevo bound: This gives us how much classical information can be sent down a noiseless

quantum channel. The only noise that comes here is because of the quantum measurement at the

end. At the input side, Alice sends ρx with probability px. At the output end Bob measure a

POVM Ey,

py|x = tr(Eyρx).

The Holevo bound on the mutual information between the random variables X and Y (What was

sent by Alice and what Bob infers) is

H(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx) = χ,

where χ is referred to as the Hoelvo quantity. The maximum value of H(X : Y ) is called the

accessible information.
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