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A Brief Review of Quantum Mechanics

A complete description of the state of a quantum system is given by a vector in the Hilbert space

associated with the system. The state vector - often also called the wave function - may contain

a variety of information about the system, all packaged in a form that respects the uncertainty

principle. For instance
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The Hilbert space is a complex vector space endowed with an inner product,

(|φ〉, |ψ〉) = 〈φ|ψ〉.

The ‘Bra’ vector |φ〉 is defined as a linear functional on |ψ〉 that maps the kets on to C.

1. The inner product is linear in |ψ〉:

(|φ〉, a|ψ1〉+ b|ψ2〉) = a(|φ〉, |ψ1〉) + b(|φ〉, |ψ2〉).

2. Complex symmetric:

(|φ〉, |ψ〉) = (|ψ〉, |φ〉)∗.

3. Anti-linearity in |φ〉,

(a|φ1〉+ b|φ2〉, |ψ〉) = a∗(|φ1〉, |ψ〉) + b∗(|φ2〉, |ψ〉).

4. (|ψ〉, |ψ〉) ≥ 0 with equality if and only if |ψ〉 = 0.

We can identify a basis |ej〉 = |j〉, j = 1, . . . D with 〈ej |ek〉 = δjk and expand any vector in terms

of the basis as
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cj |ej〉 =
∑
j

〈ej |ψ〉|ej〉, cj = 〈ej |ψ〉.

Similarly

|φ〉 =
∑
j

dj |ej〉 =
∑
j

|ej〉〈ej |φ〉,



2

and

〈φ|ψ〉 =
∑
j

d∗jcj =
∑
j

〈φ|ej〉〈ej |ψ〉.

The expansion coefficients of the vectors furnish a representation of the Hilbert space vectors and

their duals as column/row vectors:
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∗
D), 〈φ|ψ〉 = (d∗1 . . . d

∗
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Hilbert space vectors satisfy the Shwarz inequality:

|〈φ|ψ〉| ≤ 〈φ|φ〉1/2〈ψ|ψ〉1/2.

Proof: We start with defining a new Hilbert space vector,

|ξ〉 ≡ |ψ〉 〈φ|ψ〉
〈ψ|ψ〉

.

Let

|χ〉 = |φ〉 − |ξ〉, ⇒ |φ〉 = |χ〉+ |ξ〉.

The Shwarz inequality is essentially the statement that the vector |χ〉 has non-zero length (〈χ|χ〉 ≥
0). Note that as of now we have not required that |φ〉 and |χ〉 be normalized vectors.

〈ξ|χ〉 = 〈ξ|φ〉 − 〈ξ|ξ〉 =
〈ψ|φ〉
〈ψ|ψ〉

〈ψ|φ〉 − |〈ψ|φ〉|
2

|〈ψ|ψ〉|2
〈ψ|ψ〉 = 0.

So

〈φ|φ〉 = 〈χ|χ〉+ 〈ξ|ξ〉 ≥ 〈ξ|ξ〉 =
|〈ψ|φ〉|2

|〈ψ|ψ〉|2
〈ψ|ψ〉 =

|〈ψ|φ〉|2

〈ψ|ψ〉
,

⇒ 〈φ|φ〉〈ψ|ψ〉 ≥ |〈φ|ψ〉|2.

Linear Operators

We have described quantum kinematics using vectors in Hilbert space. Now we have to establish

the mathematical tools for describing changes to the state of quantum systems. Due to the linearity

of quantum mechanics, linear operators on Hilbert space vectors fill this role. Linear operators act

as

A(a|ψ〉+ b|φ〉) = aA|ψ〉+ bA|φ〉.
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Choosing a basis |ej〉, we can have a matrix representation of a linear operator as

A =


A11 A12 · · · A1D

A21 A22 · · · A2D

...
...

AD1 AD2 · · · ADD

 , Ajk = 〈ej |A|ek〉.

In terms of the matrix representation, we have

A|ψ〉 =
∑
j

|ej〉〈ejA|ψ〉 =
∑
j,k

|ej〉〈ej |A|ek〉〈ek|ψ〉. =
∑
j,k

|ej〉Ajkck.

We can equivalently represent an operator using the outer-product representation as

A =
∑
jk

|ej〉Ajk〈ek| =
∑
j

|ej〉〈ej |A|ek〉〈ek|,

Here we have used the resolution of the identity operator as

11 =
∑
j

|ej〉〈ej |.

Product of two operators:

AB =
∑
jklm

|ej〉〈ej |A|el〉〈el|em〉〈em|B|ek〉〈ek|

=
∑
jkl

|ej〉〈ej |A|el〉〈el|B|ek〉〈ek|

=
∑
jk

(∑
l

AjlBlk

)
|ej〉〈ek|.

Adjoint (Hermitian conjugate) operator: The adjoint of an operator is defined by the relation

(|φ〉, A|ψ〉) = (A†|φ〉, |ψ〉) = (|ψ〉, A†|φ〉)∗.

In the Dirac notation we have

〈φ|A|ψ〉 = 〈ψ|A†|φ〉∗.

In terms of dual vectors, 〈φ|A† is the dual of A|φ〉 and 〈φ|A is the dual of A†|φ〉. Some of the

properties of the adjoint are listed below:

1. Adjoint is anti linear: (aA+ bB)† = a∗A† + b∗B†

2. (A†)jk = 〈ejA†|ek〉 = 〈ek|A|ej〉∗ = A∗kj ⇒ (A†)† = A.

3. (|ψ〉〈φ|)† = |φ〉〈ψ| ⇒ A† =
∑

jk |ej〉〈ek|A∗kj .

4. (AB)† = B†A†.
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A projection operator projects on to a direction in Hilbert space:

Pψ = |ψ〉〈ψ|, 〈ψ|ψ〉 = 1.

Pψ|φ〉 = |ψ〉〈ψ|φ〉.

We can also define a projector on to a multidimensional subspace of the Hilbert space spanned by

the vectors |ej〉, j = 1, . . . , D as

S =
D∑
j=1

|ej〉〈ej |.

The operator S is the unit operator in the subspace.

An operator has a spectral decomposition or an eigenvalue decomposition if it can be written

in the form

A =
∑
j

λj |ej〉〈ej | =
∑
j

λjPj =
∑
λ

λPλ,
∑
j

Pj =
∑
λ

Pλ = 11.

The vectors |ej〉 are the eigenvectors of A,

A|ej〉 = λj |ej〉.

Multiple eigenvectors can correspond to the same eigenvalue λ. These are said to be degenerate

eigenvectors. We can group the degenerate eigenvectors into subspaces or eigenspaces S. Eigen-

vectors corresponding to different eigenvalues are orthogonal to each other. Pλ =
∑

λj=λ
|ej〉〈ej | is

the projector on to the subspace spanned by all the eigenvectors with eigenvalue λ.

The support of an operator is the subspace S spanned by all its eigenvectors corresponding to

non-zero eigenvalues. The null space K of the operator is the complement of the support and is

spanned by eigenvectors with zero eigenvalues. The two subspaces are mutually orthogonal.

The commutator of two operators is defined as

[A, B] = AB −BA.

A Normal operator M is one such that [M, M †] = 0.

Theorem: An operator has a spectral decomposition if and only if it is normal.

Hermitian operators are normal operators whose eigenvalues are all real. As can be easily

seen from the spectral decomposition, Hermitian operators are adjoints of themselves (self-adjoint)

H = H†

Another useful class of operators are normal operators whose eigenvalues are phases of the kind

eiφ. These are the unitary operators and they satisfy:

UU † = U †U = 11.

Unitary operators preserve inner products, take orthonormal bases to orthonormal bases and rows

and columns of unitary operators are themselves orthogonal vectors.

A projection operator is a Hermitian operator whose eigenvalues are either 0 or 1. Alternatively,

a Hermitian operator P is a projector if P 2 = P .
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