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The commutator of two operators is defined as

[A, B] = AB −BA.

A Normal operator M is one such that [M, M †] = 0.

Theorem: An operator has a spectral decomposition if and only if it is normal.

Hermitian operators are normal operators whose eigenvalues are all real. As can be easily

seen from the spectral decomposition, Hermitian operators are adjoints of themselves (self-adjoint)

H = H†

Another useful class of operators are normal operators whose eigenvalues are phases of the kind

eiφ. These are the unitary operators and they satisfy:

UU † = U †U = 11.

Unitary operators preserve inner products, take orthonormal bases to orthonormal bases and rows

and columns of unitary operators are themselves orthogonal vectors.

A projection operator is a Hermitian operator whose eigenvalues are either 0 or 1. Alternatively,

a Hermitian operator P is a projector if P 2 = P .

Normal operators have the additional desirable quality that any function on complex variables,

f : C→ C can be extended to a function on the normal operators by

f(A) = f(
∑
j

λj |ej〉〈ej |) =
∑
j

f(λj)|ej〉〈ej |.

As an example, consider the unitary operator,

U =
∑
j

eiφj |ej〉〈ej |.

We can now construct a Hermitian operator,

H =
∑
j

φj |ej〉〈ej |,

such that

U =
∑
j

eiφj |ej〉〈ej | = eiH .

In fact any unitary can be written as a the exponential of a Hermitian operator.

Let us now introduce the trace operation on an operator as

tr(A) ≡
∑
j

〈ej |A|ej〉.
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1. The trace is a linear operation

tr(aA+ bB) = a tr(A) + b tr(B).

2. Trace is basis independent despite the definition having an explicit choice of basis in it:∑
j

〈ej |A|ej〉 =
∑
jk

〈ej |fk〉〈fk|A|ej〉

=
∑
jk

〈fk|A|ej〉〈ej |fk〉

=
∑
k

〈fk|A|fk〉,

where we have first inserted a resolution of the identity and then removed it in the next step.

3. tr(AB) = tr(BA).

4. tr(ABC) = tr(CAB) = tr(BCA): cyclic property

5. tr(|ψ〉〈φ|) =
∑

j〈ej |ψ〉〈φ|ej〉 =
∑

j〈φ|ej〉〈ej |ψ〉 = 〈φ|ψ〉.

6. tr(A|ψ〉〈φ|) = tr(|ψ〉〈φ|A) = 〈φ|A|ψ〉.

The last two properties say that the trace operation turns an outer product into a sandwich.

Theorem 1. Simultaneous eigenvectors theorem: Two normal operators have simultaneous eigen-

vectors if an only if they commute.

Proof. If A and B have simultaneous eigenvectors:

A =
∑
j

λj |ej〉〈ej |, B =
∑
j

µj |ej〉〈ej |,

Then

[A, B] =
∑
jk

λjµk[|ej〉〈ej |, |ek〉〈ek|] = 0.

To prove the reverse, we have [A, B] = 0. Let A have an eigendecompostion

A =
∑
λ

λPλ,

with Pλ projecting on to degenerate eigen subspaces Sλ of A. For any vector |e〉 in Sλ (A|e〉 = λ|e〉),
we have

A(B|e〉) = B(A|e〉) = λB|e〉.

This means that B|e〉 is also an eigenvector of A with the eigenvalue λ. This means that B maps

each eigen subspace of A into itself. So we can write the operator B as

B =
∑
λ

Bλ,
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where Bλ acts only within the corresponding eigen subspace Sλ. Diagonalizing the Bλs within each

subspace Sλ yields the eigenvectors of B which are also eigenvectors of A.

Note that if B eigenvectors in different Sλ are degenerate then we can superpose them to create

eigenvectors of B which do not lie in any of the Sλs.

Quantum mechanics: Axioms

Now that we have the mathematical tools to describe quantum states and changes to those

states, let us connect it to observations and experiments by formulating the axioms of quantum

mechanics in terms of Hilbert space vectors, operators etc.

1. A state of a quantum system is a ray in Hilbert space. A ray is the collection of state vectors

a|ψ〉, a ∈ C. The set of rays is called a projective Hilbert space.

(a) We usually normalize the rays so that 〈ψ|ψ〉 = 1. However still eiθ|ψ〉 is the same state

as |ψ〉. The overall (global) phase on the state does not matter and has no observable

consequences. A normalized vector is called a state vectors.

(b) The phase ambiguity can be removed by identifying the state of a quantum system not

with a ray in Hilbert space but with a one dimensional projector |ψ〉〈ψ|. This leads to

the density matrix representation of the states which we will look into in detail later.

2. An observable is a Hermitian linear operators,

A =
∑
j

λj |ej〉〈ej | =
∑
λ

λPλ.

The result of a measurement of A is one of the eigenvalues λ. When the system is in state

|ψ〉 the probability of getting the measurement result as λ is

p(λ) = 〈ψ|Pλ|ψ〉 =
∑
λj=λ

|〈ej |ψ〉|2 = tr(Pλ|ψ〉〈ψ|).

|〈ej |ψ〉|2 is the probability for eigenvector |ej〉 and 〈ej |ψ〉 is the corresponding probability

amplitude.

The eigenvalues label the measurement results while the probabilities for each outcome de-

pend on the eigenvectors.

3. A measurement with result |ej〉 leaves the system in the state |ej〉 (collapse of the wave

function). So after the measurement the state is

|ψ〉 → Pj |ψ〉√
〈ψ|Pj |ψ〉

=
Pj |ψ〉
pj

.
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4. The system has a Hamiltonian H. If the system is closed or isolated from everything else in

the universe then its state vector evolves according the the Schrödinger equation,

i~
d|ψ〉
dt

= H|ψ〉 ⇒ |ψ(t)〉 = e−iHt/~|ψ(0)〉.

The finite time evolution operator is given by the unitary operator U(t).

5. Expectation values

〈A〉 =
∑
λ

p(λ) = 〈ψ|
∑
λ

λPλ|ψ〉 = 〈ψ|A|ψ〉.

As we proceed most of these will have to be generalized especially in the context of dealing with

quantum systems that are interacting in uncontrollable ways with their respective environments.

Then we will have to learn about density operators for representing states, POVMs representing

measurements, quantum operations and dynamical maps for evolution etc.
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