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qubits

The quantum analogue of a bit, aptly named as a qubit has states described by rays in a

two dimensional (D = 2) Hilbert space. The fiducial basis or computational basis in the two

dimensional vector space is formed by vectors denoted as

|0〉 and |1〉.

A few physical realizations of qubit include:

1. Spin-1/2 particles: |0〉 = | ↑〉 and |1〉 = | ↓〉

2. Polarization of a photon: |0〉 = |R〉 and |1〉 = |L〉

3. Two states of an atom |0〉 = |e〉 and |1〉 = |g〉

An arbitrary pure state of a qubit is given by

|ψ〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1.

Using the freedom to choose the overall phase, we can set a to be real and positive and parametrize

it with an angle as a = cos θ/2 while fixing the relative phase between |0〉 and |1〉 to be between 0

and 2π we can choose b = eiφ sin θ/2, so that a general state is represented as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 = |~n〉 = |+ 1, ~n〉,

where ~n is the unit vector parametrized by the angles θ and φ. The unit vector −~n is parameterized

by π − θ and φ+ π:

| − ~n〉 = sin
θ

2
|0〉 − eiφ cos

θ

2
|1〉.

We have 〈~n| − ~n〉 = 0. By parameterizing states of a qubit with two angles, which in turn specify

a unit vector in a real three dimensional vector space, we are identifying states with points on the

surface of a unit sphere in real space. For instance

|0〉 = |+ 1, ~ez〉 = |~ez〉 and |1〉 = | − 1, ~ez〉 = | − ~ez〉.

In general |x〉 = |(−1)x, ~ez〉. The unit sphere of states is called the Bloch sphere when we are dealing

with states of a spin-1/2 system while it is called the Poincare sphere when we are dealing with
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FIG. 1: The Bloch sphere for a qubit

the polarization states of a photon. The Bloch sphere and the location of some of the commonly

encountered states on it are shown in the figure below.

The projector along an arbitrary pure state of a qubit is given by

P~n = |~n〉〈~n|

= cos2
θ

2
|0〉〈0|+ sin2 θ

2
|1〉〈1|+ cos

θ

2
sin

θ

2
(eiφ|1〉〈0|+ e−iφ|0〉〈1|)

=
1

2
(1 + cos θ)|0〉〈0|+ 1

2
(1− cos θ)|1〉〈1|

+
1

2
sin θ[(cosφ+ i sinφ)|1〉〈0|+ (cosφ− i sinφ)|0〉〈1|]

=
1

2

[
|0〉〈0|+ |1〉〈1|+ cos θ(|0〉〈0| − |1〉〈1|) + sin θ cosφ(|0〉〈1|+ |1〉〈0|)

+ sin θ sinφ(−i|0〉〈1|+ i|1〉〈0|)
]
.

We can now identify the following operators,

σx = σ1 = X = |0〉〈1|+ |1〉〈0| ↔

(
0 1

1 0

)
,

σy = σ2 = Y = −i|0〉〈1|+ i|1〉〈0| ↔

(
0 −i
i 0

)
,

σz = σ3 = Z = |0〉〈0| − |1〉〈1| ↔

(
1 0

0 −1

)
,

and along with the coefficients nx = sin θ cosφ, ny = sin θ sinφ and nz = cos θ, we can write

P~n =
1

2
(11 + ~n · ~σ).
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The operators ~σ = (σx, σy, σz) are called the Pauli spin operators or the Pauli matrices. The

operator corresponding to the total spin of a spin-1/2 system is given by

~S =
1

2
~~σ,

as the name suggests. We will be dealing rather extensively with the Pauli operators through this

course and it is therefore worthwhile to enumerate and understand its properties.

1. Hermitian: σj = σ†j and Unitary: σjσ
†
j = σ†jσj = σ2j = 11.

2. σjσk = 11δjk + iεjklσl, with repeated indices summed over and εjkl being the antisymmetric

symbol. This means that all products of Pauli matrices can be reduced to one of the three

matrices or to the unit operator.

σ1σ2 = −σ2σ1 = iσ3,

σ2σ3 = −σ3σ2 = iσ1,

σ3σ1 = −σ1σ3 = iσ2.

From the above we get

[σj , σk] = 2iεjklσl, [σj , σk]+ = σjσk + σkσj = 211δjk.

Specifically,

[σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, [σ3, σ1] = 2iσ2.

3. tr(σj) = tr(~n · ~σ) = 0.

4. Orthogonality: tr(σ†jσk) = tr(σjσk) = 2δjk.

5. The operators 11, σ1, σ2 and σ3 form a basis for the 4 dimensional space of operators (2× 2

matrices) acting on single qubit states. Any operator can be written as

A = A011 +Ajσj = A011 + ~A · ~σ = Aασα, α = 0, 1, 2, 3, σ0 ≡ 11.

A† = A∗ασα and if A is Hermitian then Aα are real.

6. From the orthogonality condition, tr(σ†ασβ) = tr(σασβ) = 2δαβ, we have

A = Aασα ⇔ Aα =
1

2
tr(σαA).

7. If A = Aασα and B = Bασα, then

AB = (A0B0 + ~A · ~B)11 + (A0
~B +B0

~A+ i ~A× ~B) · ~σ.

⇒ tr(AB) = 2(A0B0 + ~A · ~B) = 2AαBα.
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As a special case

(~n · ~σ)(~m · ~σ) = ~n · ~m11 + i(~n× ~m) · ~σ.

We also have

[A, B] = 2i( ~A× ~B) · ~σ.

[A, A†] = 2i( ~A× ~A∗) · ~σ,

So if A is normal, then ~A× ~A∗ = 0 and this also means ~A = eiφ~S, where ~S is a real vector.

8. P~n = (11 + ~n · ~σ)/2

11 = P~n + P−~n = |~n〉〈~n|+ | − ~n〉〈−~n|,

~n · ~σ = P~n − P−~n = |~n〉〈~n| − | − ~n〉〈−~n|.

The second equation is the eigen-decomposition of ~n · ~σ.

9. If A = A011 + ~A · ~σ is Hermitian, then we can define a unit vector ~A/| ~A|, giving

A = A011 + | ~A|~n · ~σ = (A0 + | ~A|)|~n〉〈~n|+ (A0 − | ~A|)| − ~n〉〈−~n|.

This gives the eigenvalues and eigenvectors of A.

If ~A is a normal operator so that ~A = eiφ| ~A|~n, then A0 ± eiγ | ~A| are the eigenvalues of the

operator.

10. We can define raising and lowering operators,

σ+ =
1

2
(σ1 + iσ2) = |0〉〈1| ↔

(
0 1

0 0

)

σ− =
1

2
(σ1 − iσ2) = |1〉〈0| ↔

(
0 0

01 0

)
.

σ2± = 0, σ±σ∓ =
1

2
(11± σ3), σ±σ3 = ∓σ±, σ3σ± = ±σ±.

[σ±, σ∓] = ±σ3, [σ±, σ∓]+ = 11, [σ±, σ3] = ∓2σ±, [σ±, σ3]+ = 0.

11. ei~n·~σγ = 11 cos γ + i~n · ~σ sin γ.
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